qazimbhat1's picture
Update README.md
bfb2d4e verified
|
raw
history blame
6.41 kB
metadata
license: apache-2.0
language:
  - en
pipeline_tag: text-generation
library_name: transformers
tags:
  - nlp
  - llm
  - mllm

CrystalChat-7B-MLLM: a fully-reproducible vision language model based on CrystalChat-7B

Model Description

CrystalChat-7B based multi-modal large language model (MLLM) mimics the training recipe used for Vicuna-7B based LLaVa-v1.5. CrystalChat-7B-MLLM models are entirely transparent, having open-sourced all materials, including code, data, model checkpoint, intermediate results, and more at TODO: Add paper link.

About CrystalChat-7B-MLLM:

  • 7 billion parameter LLM
  • CLIP ViT-L/14-336px vision encoder
  • Languages: English
  • Models Released: CrystalChat-7B-MLLM
  • Trained in 2 stages
  • License: ?

Crystal-based models were developed as a collaboration between MBZUAI, Petuum, and LLM360 TODO- check????.

Evaluation

General Evaluation Metrics for MLLMs. MME serves as an extensive evaluative benchmark, aiming to assess perceptual and cognitive capability of MLLMs within 14 sub-tasks. Additionally, we also evaluate the performance of our models on text-oriented visual question answering tasks employing a diverse set of benchmark datasets including ScienceQA and TextVQA. Furthermore, we assess our models’ ability toward anti-hallucination through POPE.

LLM Backbone MME-P MME-C POPE SciQA TextVQA
CrystalCoder-7B 1359.83 238.92 86.18 64.15 50.39
CrystalChat-7B 1456.53 308.21 86.96 67.77 57.84
Vicuna-7B 1481.12 302.85 87.17 67.97 56.49

Table 1: Comparison of different LLM backbones on visual language understanding benchmarks. All models are instruction-tuned on the general domain data (i.e. LLaVA)

Data and Training Details

Pretrain Data

LLaVA Visual Instruct Pretrain LCS-558K is a filtered subset of the LAION, CC, and SBU datasets, featuring a more balanced distribution of concept coverage. The file includes multimodal synthesized conversations generated from image-caption pairs by incorporating randomly selected instructions such as "Describe this image." It is used for pretraining in LLaVA, with the raw CC-3M caption serving as the default answer.

Finetune Data

The dataset chosen was created by LLaVA with academic-task-oriented VQA data mixture and data from ShareGPT. LLaVA Visual Instruct 150K is a dataset of GPT-generated multimodal instruction-following data. It is designed for visual instruction tuning and aims to develop large multimodal models with capabilities akin to GPT-4 in both vision and language.

Data Size Response formatting prompts
LLaVA [36] 158K
ShareGPT [46] 40K
VQAv2 [19] 83K Answer the question using a single word or phrase.
GQA [21] 72K Answer the question using a single word or phrase.
OKVQA [41] 9K Answer the question using a single word or phrase.
OCRVQA [42] 80K Answer the question using a single word or phrase.
A-OKVQA [45] 66K Answer with the option’s letter from the given choices directly.
TextCaps [47] 22K Provide a one-sentence caption for the provided image.
RefCOCO [24, 40] 48K Note: randomly choose between the two formats. Provide a short description for this region.
VG [25] 86K Provide the bounding box coordinate of the region this sentence describes.
Total 665K

Table 2. Instruction-following Data Mixture of LLaVA-1.5.

TODO: Check if we need to publish these 2

Stage 2 - Finetuning

Stage 1 - Pretraining

[to find all branches: git branch -a]

Examples

TODO: Add image as sample example

k2 big eval table

Loading Crystal

from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(
                    "LLM360/CrystalChat-7B-MLLM",
                    padding_side="right",
                    trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    "LLM360/CrystalChat-7B-MLLM",
    trust_remote_code=True,
    torch_dtype=torch.float16,
    device_map='auto',
    low_cpu_mem_usage=True
)

LLM-360

LLM-360 is an open research lab enabling community-owned AGI through open-source large model research and development.

Crystal-based Models enables community-owned AGI by creating standards and tools to advance the bleeding edge of LLM capability and empower knowledge transfer, research, and development.

We believe in a future where artificial general intelligence (AGI) is created by the community, for the community. Through an open ecosystem of equitable computational resources, high-quality data, and flowing technical knowledge, we can ensure ethical AGI development and universal access for all innovators.

Visit us

Citation

BibTeX:

@article{
      title={}, 
      author={},
      year={},
}