purabp1249's picture
End of training
df3785f
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-herbify
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

swin-tiny-patch4-window7-224-finetuned-herbify

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0378
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 35

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.94 4 1.8723 0.2787
No log 1.88 8 1.5899 0.6885
1.8465 2.82 12 1.1661 0.8197
1.8465 4.0 17 0.5156 0.9508
0.9675 4.94 21 0.2177 0.9836
0.9675 5.88 25 0.0929 0.9836
0.9675 6.82 29 0.0378 1.0
0.2342 8.0 34 0.0128 1.0
0.2342 8.94 38 0.0075 1.0
0.1022 9.88 42 0.0053 1.0
0.1022 10.82 46 0.0049 1.0
0.0553 12.0 51 0.0032 1.0
0.0553 12.94 55 0.0022 1.0
0.0553 13.88 59 0.0017 1.0
0.0278 14.82 63 0.0018 1.0
0.0278 16.0 68 0.0012 1.0
0.0266 16.94 72 0.0011 1.0
0.0266 17.88 76 0.0006 1.0
0.046 18.82 80 0.0007 1.0
0.046 20.0 85 0.0007 1.0
0.046 20.94 89 0.0012 1.0
0.0245 21.88 93 0.0015 1.0
0.0245 22.82 97 0.0011 1.0
0.0249 24.0 102 0.0007 1.0
0.0249 24.94 106 0.0006 1.0
0.0201 25.88 110 0.0005 1.0
0.0201 26.82 114 0.0005 1.0
0.0201 28.0 119 0.0004 1.0
0.0208 28.94 123 0.0004 1.0
0.0208 29.88 127 0.0004 1.0
0.0122 30.82 131 0.0004 1.0
0.0122 32.0 136 0.0004 1.0
0.0222 32.94 140 0.0004 1.0

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cpu
  • Datasets 2.14.5
  • Tokenizers 0.13.3