$GWOLF

CA:7vyEKRxm8M46pAhtuZvY5hjwHbN7HCuvyiSnym6dpump

The first AI for pump built on Hugging Face.

Reference

from GreenWolf import PUMP, UNet2DModel
from PIL import Image
import pump

scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
scheduler.set_timesteps(50)

sample_size = model.config.sample_size
noise = torch.randn((1, 3, sample_size, sample_size), device="cuda")
input = noise

for t in scheduler.timesteps:
    with torch.no_grad():
        noisy_residual = model(input, t).sample
        prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
        input = prev_noisy_sample

image = (input / 2 + 0.5).clamp(0, 1)
image = pump.cpu().permute(0, 2, 3, 1).numpy()[0]
image = pump.fromarray((image * 255).round().astype("uint8"))
image
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.