stablelm-4e1t-2b-v0.1
This is a layer pruning experiment based off of stablelm-3b-4e1t:
- 10 layers pruned with PruneMe/MergeKit
- layers selected using BEE-spoke-data/fineweb-100k_en-med
- brief subsequent continued pretraining @ ctx 4096
- data: 10k rows of FineWeb (different than pruning data) + some curated data
- wandb here
details
See axolotl config
config
axolotl version: 0.4.0
base_model: pszemraj/stablelm-3b-4e1t-prune10
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
strict: false
seed: 80085
# dataset
datasets:
- path: BEE-spoke-data/KI-smorgasbord_fw-small
type: completion # format from earlier
field: text # Optional[str] default: text, field to use for completion data
val_set_size: 0.015
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: false
train_on_inputs: false
group_by_length: false
# WANDB
wandb_project: llama3-pruning
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: stablelm-4e1t-2b-v0.1
hub_model_id: pszemraj/stablelm-4e1t-2b-v0.1
hub_strategy: every_save
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_torch_fused # paged_adamw_32bit
weight_decay: 0.05
lr_scheduler: cosine
learning_rate: 5e-5
warmup_ratio: 0.1
load_in_8bit: false
load_in_4bit: false
bf16: true
tf32: true
flash_attention: true
torch_compile: true # requires >= torch 2.0, may sometimes cause problems
torch_compile_backend: inductor # Optional[str]
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
# hyperparams for freq of evals, saving, etc
evals_per_epoch: 5
saves_per_epoch: 3
save_safetensors: true
save_total_limit: 1
output_dir: ./output-axolotl/output-model-2b
logging_steps: 8
deepspeed:
special_tokens:
pad_token: <|end_of_text|>
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0006 | 1 | 4.4344 |
2.6558 | 0.2004 | 332 | 2.7150 |
2.6548 | 0.4007 | 664 | 2.6196 |
2.5435 | 0.6011 | 996 | 2.5981 |
2.5133 | 0.8014 | 1328 | 2.5502 |
2.489 | 1.0018 | 1660 | 2.5106 |
2.2671 | 1.1898 | 1992 | 2.4944 |
2.2038 | 1.3902 | 2324 | 2.4843 |
2.2513 | 1.5905 | 2656 | 2.4761 |
2.1654 | 1.7909 | 2988 | 2.4769 |
- Downloads last month
- 20
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for pszemraj/stablelm-4e1t-2b-v0.1
Base model
stabilityai/stablelm-3b-4e1t