pszemraj's picture
Model save
0ae2391
|
raw
history blame
3.3 kB
metadata
license: apache-2.0
base_model: pszemraj/mega-ar-small-4096-NC-simplewiki-v1
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: PT-mega-ar-small-4096-NC-simplewiki-v1-minipile-main-4096
    results: []

PT-mega-ar-small-4096-NC-simplewiki-v1-minipile-main-4096

This model is a fine-tuned version of pszemraj/mega-ar-small-4096-NC-simplewiki-v1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7502
  • Accuracy: 0.3650

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 80085
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.7062 0.04 200 5.5259 0.1829
5.4056 0.07 400 5.1650 0.2073
5.1319 0.11 600 4.9704 0.2261
4.9674 0.14 800 4.8417 0.2370
4.951 0.18 1000 4.7261 0.2467
4.7753 0.21 1200 4.6288 0.2554
4.6721 0.25 1400 4.5260 0.2678
4.6081 0.28 1600 4.4409 0.2768
4.4929 0.32 1800 4.3566 0.2857
4.4345 0.35 2000 4.2812 0.2957
4.3024 0.39 2200 4.2085 0.3052
4.2505 0.42 2400 4.1424 0.3151
4.2294 0.46 2600 4.0859 0.3217
4.2766 0.49 2800 4.0372 0.3298
4.1229 0.53 3000 3.9901 0.3357
4.2007 0.56 3200 3.9538 0.3410
3.9723 0.6 3400 3.9186 0.3453
4.0599 0.63 3600 3.8881 0.3487
4.0351 0.67 3800 3.8650 0.3515
3.9324 0.7 4000 3.8419 0.3546
3.9408 0.74 4200 3.8234 0.3564
3.9499 0.77 4400 3.8091 0.3585
3.9456 0.81 4600 3.7938 0.3602
3.9035 0.84 4800 3.7809 0.3618
3.8709 0.88 5000 3.7712 0.3631
3.8189 0.92 5200 3.7612 0.3639
3.7973 0.95 5400 3.7549 0.3646
3.8952 0.99 5600 3.7502 0.3650

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.2.0.dev20230907+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3