librarian-bot's picture
Librarian Bot: Add base_model information to model
61b9676
|
raw
history blame
6.69 kB
---
language:
- en
license:
- apache-2.0
- cc-by-nc-4.0
tags:
- generated_from_trainer
- instruct
- instructions
- code
- instructiongen
datasets: pszemraj/fleece2instructions-codealpaca
metrics:
- rouge
widget:
- text: 'git lfs install
huggingface-cli lfs-enable-largefiles .
git lfs track "*.bin"
git add .
git commit -a -m "add fp32 chkpt"
git push
'
example_title: bash
- text: "export interface DocumentParams {\n pageContent: string;\n\n // eslint-disable-next-line\
\ @typescript-eslint/no-explicit-any\n metadata: Record<string, any>;\n}\n\n\
/**\n * Interface for interacting with a document.\n */\nexport class Document\
\ implements DocumentParams {\n pageContent: string;\n\n // eslint-disable-next-line\
\ @typescript-eslint/no-explicit-any\n metadata: Record<string, any>;\n\n constructor(fields?:\
\ Partial<DocumentParams>) {\n this.pageContent = fields?.pageContent ?? this.pageContent;\n\
\ this.metadata = fields?.metadata ?? {};\n }\n}\n"
example_title: js
- text: "def merge(left, right):\n if len(left) == 0:\n return right\n\n\
\ if len(right) == 0:\n return left\n\n result = []\n index_left\
\ = index_right = 0\n\n while len(result) < len(left) + len(right):\n \
\ if left[index_left] <= right[index_right]:\n result.append(left[index_left])\n\
\ index_left += 1\n else:\n result.append(right[index_right])\n\
\ index_right += 1\n\n if index_right == len(right):\n \
\ result += left[index_left:]\n break\n\n if index_left\
\ == len(left):\n result += right[index_right:]\n break\n\
\n return result\n"
example_title: merge
- text: "import pandas as pd\nimport plotly.graph_objects as go\n\ndf = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_apple_stock.csv')\n\
\nfig = go.Figure(go.Scatter(x = df['AAPL_x'], y = df['AAPL_y'],\n \
\ name='Share Prices (in USD)'))\n\nfig.update_layout(title='Apple Share\
\ Prices over time (2014)',\n plot_bgcolor='rgb(230, 230,230)',\n\
\ showlegend=True)\n\nfig.show()\n"
example_title: plot
- text: "from spellchecker import SpellChecker\n\nspell = SpellChecker()\n\ndef check_word_spelling(word:\
\ str):\n misspelled = spell.unknown([word])\n return len(misspelled) ==\
\ 0\n\ndef eval_and_replace(text: str, match_token: str = \"- \"):\n if match_token\
\ not in text:\n return text\n else:\n while True:\n \
\ full_before_text = text.split(match_token, maxsplit=1)[0]\n before_text\
\ = [\n char for char in full_before_text.split()[-1] if char.isalpha()\n\
\ ]\n before_text = \"\".join(before_text)\n \
\ full_after_text = text.split(match_token, maxsplit=1)[-1]\n after_text\
\ = [char for char in full_after_text.split()[0] if char.isalpha()]\n \
\ after_text = \"\".join(after_text)\n full_text = before_text +\
\ after_text\n if check_word_spelling(full_text):\n \
\ text = full_before_text + full_after_text\n else:\n \
\ text = full_before_text + \" \" + full_after_text\n if match_token\
\ not in text:\n break\n return text\n\ntext = \"I- am-\
\ a go- od- boy\"\neval_and_replace(text)\n"
example_title: spell check
- text: 'import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
sequences = ["I''ve been waiting for a HuggingFace course my whole life.", "So
have I!"]
tokens = tokenizer(sequences, padding=True, truncation=True, return_tensors="pt")
output = model(**tokens)
'
example_title: model inference
inference:
parameters:
max_length: 96
num_beams: 4
base_model: facebook/bart-large
---
# bart-large-code-instructiongen
Use this text2text model to find out what LLM instructions might be able to generate an arbitary piece of code!
- Check out a [basic demo on Spaces](https://huggingface.co./spaces/pszemraj/generate-instructions)
- An example of how to use instructiongen models in a CLI script can be found [here](https://gist.github.com/pszemraj/8b0213e700763106074d3ac15d041c14)
- You can find other models fine-tuned for instruction generation by [searching for the instructiongen tag](https://huggingface.co./models?other=instructiongen)
## about
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co./facebook/bart-large) on the `pszemraj/fleece2instructions-codealpaca` dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9222
- Rouge1: 62.0692
- Rouge2: 36.1947
- Rougel: 57.5128
- Rougelsum: 58.6613
- Gen Len: 31.0060
## Intended uses & limitations
🚨 **note:** as the authors elected to release the [original dataset](https://github.com/sahil280114/codealpaca) under `cc-by-nc`, the license carries over to this model and **cannot be used for commercial activity**.
Intended use: Research on domain adaptation and/or other improvements to LLMs by extending instruction:text data pairs.
## Training and evaluation data
Refer to the linked dataset card for `pszemraj/fleece2instructions-codealpaca` or the [original dataset](https://github.com/sahil280114/codealpaca) repo.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.0914 | 1.0 | 563 | 1.0303 | 60.288 | 34.1884 | 55.9293 | 57.0714 | 30.6267 |
| 0.8688 | 2.0 | 1126 | 0.9333 | 61.0409 | 34.9823 | 56.4887 | 57.6662 | 31.7255 |
| 0.6773 | 3.0 | 1689 | 0.9222 | 62.0692 | 36.1947 | 57.5128 | 58.6613 | 31.0060 |