|
--- |
|
language: |
|
- en |
|
license: |
|
- apache-2.0 |
|
- cc-by-nc-4.0 |
|
tags: |
|
- generated_from_trainer |
|
- instruct |
|
- instructions |
|
- code |
|
- instructiongen |
|
datasets: pszemraj/fleece2instructions-codealpaca |
|
metrics: |
|
- rouge |
|
widget: |
|
- text: 'git lfs install |
|
|
|
huggingface-cli lfs-enable-largefiles . |
|
|
|
git lfs track "*.bin" |
|
|
|
git add . |
|
|
|
git commit -a -m "add fp32 chkpt" |
|
|
|
git push |
|
|
|
' |
|
example_title: bash |
|
- text: "export interface DocumentParams {\n pageContent: string;\n\n // eslint-disable-next-line\ |
|
\ @typescript-eslint/no-explicit-any\n metadata: Record<string, any>;\n}\n\n\ |
|
/**\n * Interface for interacting with a document.\n */\nexport class Document\ |
|
\ implements DocumentParams {\n pageContent: string;\n\n // eslint-disable-next-line\ |
|
\ @typescript-eslint/no-explicit-any\n metadata: Record<string, any>;\n\n constructor(fields?:\ |
|
\ Partial<DocumentParams>) {\n this.pageContent = fields?.pageContent ?? this.pageContent;\n\ |
|
\ this.metadata = fields?.metadata ?? {};\n }\n}\n" |
|
example_title: js |
|
- text: "def merge(left, right):\n if len(left) == 0:\n return right\n\n\ |
|
\ if len(right) == 0:\n return left\n\n result = []\n index_left\ |
|
\ = index_right = 0\n\n while len(result) < len(left) + len(right):\n \ |
|
\ if left[index_left] <= right[index_right]:\n result.append(left[index_left])\n\ |
|
\ index_left += 1\n else:\n result.append(right[index_right])\n\ |
|
\ index_right += 1\n\n if index_right == len(right):\n \ |
|
\ result += left[index_left:]\n break\n\n if index_left\ |
|
\ == len(left):\n result += right[index_right:]\n break\n\ |
|
\n return result\n" |
|
example_title: merge |
|
- text: "import pandas as pd\nimport plotly.graph_objects as go\n\ndf = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_apple_stock.csv')\n\ |
|
\nfig = go.Figure(go.Scatter(x = df['AAPL_x'], y = df['AAPL_y'],\n \ |
|
\ name='Share Prices (in USD)'))\n\nfig.update_layout(title='Apple Share\ |
|
\ Prices over time (2014)',\n plot_bgcolor='rgb(230, 230,230)',\n\ |
|
\ showlegend=True)\n\nfig.show()\n" |
|
example_title: plot |
|
- text: "from spellchecker import SpellChecker\n\nspell = SpellChecker()\n\ndef check_word_spelling(word:\ |
|
\ str):\n misspelled = spell.unknown([word])\n return len(misspelled) ==\ |
|
\ 0\n\ndef eval_and_replace(text: str, match_token: str = \"- \"):\n if match_token\ |
|
\ not in text:\n return text\n else:\n while True:\n \ |
|
\ full_before_text = text.split(match_token, maxsplit=1)[0]\n before_text\ |
|
\ = [\n char for char in full_before_text.split()[-1] if char.isalpha()\n\ |
|
\ ]\n before_text = \"\".join(before_text)\n \ |
|
\ full_after_text = text.split(match_token, maxsplit=1)[-1]\n after_text\ |
|
\ = [char for char in full_after_text.split()[0] if char.isalpha()]\n \ |
|
\ after_text = \"\".join(after_text)\n full_text = before_text +\ |
|
\ after_text\n if check_word_spelling(full_text):\n \ |
|
\ text = full_before_text + full_after_text\n else:\n \ |
|
\ text = full_before_text + \" \" + full_after_text\n if match_token\ |
|
\ not in text:\n break\n return text\n\ntext = \"I- am-\ |
|
\ a go- od- boy\"\neval_and_replace(text)\n" |
|
example_title: spell check |
|
- text: 'import torch |
|
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
|
|
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(checkpoint) |
|
|
|
sequences = ["I''ve been waiting for a HuggingFace course my whole life.", "So |
|
have I!"] |
|
|
|
|
|
tokens = tokenizer(sequences, padding=True, truncation=True, return_tensors="pt") |
|
|
|
output = model(**tokens) |
|
|
|
' |
|
example_title: model inference |
|
inference: |
|
parameters: |
|
max_length: 96 |
|
num_beams: 4 |
|
base_model: facebook/bart-base |
|
--- |
|
|
|
|
|
# bart-base-code-instructiongen |
|
|
|
Use this text2text model to find out what LLM instructions might be able to generate an arbitary piece of code! |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the `pszemraj/fleece2instructions-codealpaca` dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0136 |
|
- Rouge1: 59.9513 |
|
- Rouge2: 33.9118 |
|
- Rougel: 55.7815 |
|
- Rougelsum: 56.9064 |
|
- Gen Len: 29.7146 |
|
|
|
## Intended uses & limitations |
|
|
|
🚨 **note:** as the authors elected to release the [original dataset](https://github.com/sahil280114/codealpaca) under `cc-by-nc`, the license carries over to this model and **cannot be used for commercial activity**. |
|
|
|
> This is just a `base` size model, which does a decent job for its size, but is not perfect. For better quality instructions, check out [bart-large](https://huggingface.co./pszemraj/bart-large-code-instructiongen) or fine tune your own larger model on the dataset :) |
|
|
|
Intended use: Research on domain adaptation and/or other improvements to LLMs by extending instruction:text data pairs. |
|
|
|
## Training and evaluation data |
|
|
|
Refer to the linked dataset card for `pszemraj/fleece2instructions-codealpaca` or the [original dataset](https://github.com/sahil280114/codealpaca) repo. |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.02 |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.1165 | 1.0 | 281 | 1.1090 | 57.9239 | 31.9259 | 53.8737 | 54.9811 | 28.2924 | |
|
| 1.0763 | 2.0 | 563 | 1.0267 | 59.9605 | 34.0298 | 55.7523 | 56.8021 | 29.6966 | |
|
| 0.9595 | 2.99 | 843 | 1.0136 | 59.9513 | 33.9118 | 55.7815 | 56.9064 | 29.7146 | |