|
--- |
|
language: |
|
- en |
|
- es |
|
- ca |
|
licence: |
|
- apache-2.0 |
|
tags: |
|
- FLOR |
|
- bloom |
|
- spanish |
|
- catalan |
|
- english |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: |- |
|
Respon a la pregunta següent. |
|
Pregunta: "Quina és la capital de Suècia?" |
|
Resposta: "La capital de Suècia és Estocolm." |
|
---- |
|
Respon a la pregunta següent. |
|
Pregunta: "Quina beguda es consumeix als matins per despertar-se?" |
|
Resposta: "La majoria de gent consumeix cafè per despertar-se." |
|
---- |
|
Respon a la pregunta següent. |
|
Pregunta: "Explica com funciona un motor de combustió" |
|
Resposta: |
|
example_title: Pregunta-Resposta |
|
- text: |- |
|
Extrae las entidades nombradas del siguiente texto: |
|
Texto: "Me llamo Wolfgang y vivo en Berlin" |
|
Entidades: Wolfgang:PER, Berlin:LOC |
|
---- |
|
Extrae las entidades nombradas del siguiente texto: |
|
Texto: "Hoy voy a visitar el parc güell tras salir del barcelona supercomputing center" |
|
Entidades: parc güell:LOC, barcelona supercomputing center:LOC |
|
---- |
|
Extrae las entidades nombradas del siguiente texto: |
|
Texto: "Maria y Miguel no tienen ningún problema contigo" |
|
Entidades: Maria:PER, Miguel:PER |
|
---- |
|
Extrae las entidades nombradas del siguiente texto: |
|
Texto: "Damián se cortó el pelo" |
|
Entidades: Damián:PER |
|
---- |
|
Extrae las entidades nombradas del siguiente texto: |
|
Texto: "Lo mejor de Barcelona és el bar de mi amigo Pablo" |
|
Entidades: Pablo:PER, Barcelona:LOC |
|
---- |
|
Extrae las entidades nombradas del siguiente texto: |
|
Texto: "Carlos comparte piso con Marc" |
|
Entidades: |
|
example_title: Entidades-Nombradas |
|
--- |
|
|
|
# FLOR-6.3B |
|
|
|
## Table of Contents |
|
<details> |
|
<summary>Click to expand</summary> |
|
|
|
- [Model description](#model-description) |
|
- [Intended uses and limitations](#intended-uses-and-limitations) |
|
- [How to use](#how-to-use) |
|
- [Limitations and bias](#limitations-and-bias) |
|
- [Training](#training) |
|
- [Evaluation](#evaluation) |
|
- [Additional information](#additional-information) |
|
|
|
</details> |
|
|
|
## Model description |
|
|
|
**FLOR-6.3B** is a 6.3B-parameter transformer-based causal language model for Catalan, Spanish, and English. |
|
It is the result of a language adaptation technique performed on [BLOOM-7.1B](https://huggingface.co./bigscience/bloom-7b1), |
|
which involves modifying the model's vocabulary and embedding layer, and continuously pre-training the model with 140B tokens in our target languages. |
|
|
|
For more details, take a look at [this blogpost](https://medium.com/@mpamies247/flor-6-3b-a-chinchilla-compliant-model-for-catalan-spanish-and-english-7cdb389a9aac) about the project. |
|
|
|
## Intended uses and limitations |
|
|
|
The **FLOR-6.3B** model is ready-to-use only for causal language modeling. |
|
It can perform text-generation tasks and be fine-tuned for specific scenarios. |
|
|
|
## How to use |
|
```python |
|
import torch |
|
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM |
|
|
|
input_text = "Sovint em trobo pensant en tot allò que" |
|
|
|
model_id = "projecte-aina/FLOR-6.3B" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
generator = pipeline( |
|
"text-generation", |
|
model=model_id, |
|
tokenizer=tokenizer, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
) |
|
generation = generator( |
|
input_text, |
|
do_sample=True, |
|
top_k=10, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
print(f"Result: {generation[0]['generated_text']}") |
|
``` |
|
|
|
## Limitations and bias |
|
At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. |
|
However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques |
|
on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. |
|
|
|
|
|
## Training |
|
|
|
### Language adaptation and training |
|
|
|
The language adaptation technique used to create FLOR-6.3B requires the vocabulary of the source model |
|
to be adapted before continuing its pre-training with data in the target languages. Specifically, we proceeded as follows: |
|
1) We trained our own BPE tokenizer for Catalan, Spanish, and English, and replaced the original BLOOM tokenizer and vocabulary with it. This procedure implied a downsizing of the original BLOOM's embedding layer and, therefore, a model compression from 7.1B parameters to 6.3B. |
|
2) The embeddings corresponding to tokens that are present in both the original and the target vocabulary (matching tokens) were used for initialization. |
|
3) The embeddings from tokens not present in BLOOM's original vocabulary were initialized as the average of all embeddings. |
|
4) The model was initialized with the weights from BOOM-7.1B, and with our adapted tokenizer (step 1) and embeddings (steps 2-3). |
|
5) The model was then trained on a corpus that contains a mixture of Catalan, Spanish, and English data. |
|
|
|
### Training data |
|
|
|
The training corpus is composed of 140B tokens gathered from web crawlings and public domain data. |
|
|
|
Dataset | Language | Words (per-epoch) | Epochs | Total Tokens | |
|
|---------------------|----------|--------------------|--------------|--------------| |
|
mc4 | ca | 5,861.79M | 1.5 | 13,452.81M | |
|
MaCoCu | ca | 1,658.89M | 2 | 5,076.21M | |
|
CaWac | ca | 1,286.83M | 2.5 | 4,922.14M | |
|
oscar-2301 | ca | 1,784.57M | 1.75 | 4,778.17M | |
|
RacoCatala Articles | ca | 358.57M | 4 | 2,194.42M | |
|
RacoCatala Forums | ca | 1,301.12M | 1 | 1,990.71M | |
|
Tesis (TDX) | ca | 323.60M | 4 | 1,980.46M | |
|
oscar-2201 | ca | 1,155.35M | 1 | 1,767.69M | |
|
Wikipedia | ca | 266.69M | 4 | 1,632.17M | |
|
Nació Digital | ca | 216.27M | 4 | 1,323.59M | |
|
colossal-oscar-05-06-23 | ca | 207.59M | 4 | 1,270.43M | |
|
colossal-oscar-03-04-23 | ca | 195.43M | 4 | 1,196.01M | |
|
colossal-oscar-2022-27 | ca | 195.03M | 4 | 1,193.59M | |
|
Crawling populars | ca | 683.25M | 1 | 1,045.38M | |
|
El Món | ca | 85.27M | 4 | 521.85M | |
|
ACN | ca | 81.25M | 4 | 497.22M | |
|
DOGV | ca | 76.48M | 4 | 468.05M | |
|
DOGC | ca | 70.51M | 4 | 431.51M | |
|
Vilaweb | ca | 46.90M | 4 | 287.04M | |
|
hplt | ca | 160.27M | 1 | 245.21M | |
|
Les Corts Valencianes | ca | 26.88M | 4 | 164.53M | |
|
IB3 | ca | 15.82M | 4 | 96.82M | |
|
BOUA | ca | 13.42M | 4 | 82.13M | |
|
Parlament | ca | 10.09M | 4 | 61.77M | |
|
Aquí Berguedà | ca | 8.23M | 4 | 50.34M | |
|
Wikimedia | ca | 3.90M | 4 | 23.88M | |
|
Gutenberg | ca | 1.29M | 4 | 7.87M | |
|
OSCAR 23.01 | es | 53,244.56M | 0.303 | 23,070.34M | |
|
colossal_oscar_05-06-23 | es | 5,548.27M | 1 | 7,934.02M | |
|
colossal_oscar_03-04-23 | es | 5,090.46M | 1 | 7,279.36M | |
|
All_bio_corpora | es | 954.85M | 2 | 2,730.88M | |
|
Wikipedia | es | 777.49M | 2 | 2,223.63M | |
|
BOE | es | 1,031.28M | 1 | 1,474.73M | |
|
Tesis (TDX) | es | 268.66M | 2 | 768.37M | |
|
Eurlex | es | 459.19M | 1 | 656.64M | |
|
CSIC | es | 156.76M | 2 | 448.33M | |
|
BORME | es | 63.23M | 1 | 90.42M | |
|
colossal_oscar_05-06-23 | en | 51,615.35M | 0.25 | 21,162.30M | |
|
colossal_oscar_03-04-23 | en | 49,454.01M | 0.14 | 11,354.64M | |
|
Wikipedia | en | 2,116.53M | 2 | 6,942.23M | |
|
Gutenberg | en | 3,513.82M | 1 | 5,762.66M | |
|
Eurlex | en | 438.92M | 1 | 719.83M | |
|
legal-mc4 | en | 417.97M | 1 | 685.47M | |
|
|
|
### Languages |
|
|
|
The training data has the same amount of Catalan, Spanish, and English texts. |
|
The table below shows the final language distribution: |
|
|
|
|Language|Percentage| |
|
|--------|----------| |
|
| Catalan (CA) | 33.39% | |
|
| Spanish (ES) | 33.32% | |
|
| English (EN) | 33.29% | |
|
|
|
### Framework |
|
The training was conducted in 16 Cerebras' [CS-2 systems](https://www.cerebras.net/product-system/) |
|
using the [cs-2.0.2](https://github.com/Cerebras/modelzoo/releases/tag/Release_2.0.2) release of their software. |
|
|
|
## Evaluation |
|
FLOR-6.3B has been evaluated in a 5-shot setting, using EleutherAI's *LM Evaluation Harness*. |
|
The evaluation benchmark includes tasks in Catalan, Spanish, and English, with particular emphasis on Catalan datasets. |
|
|
|
The tasks were chosen to cover several evaluation areas in order to provide a comprehensive overview of the model's capabilities. |
|
The baselines used to compare our results are multilingual and English open-source 7B models and smaller models of the FLOR family of models: **TBC**. |
|
|
|
Our implementation of EleutherAI's *LM Evaluation Harness* can be found [here](https://github.com/langtech-bsc/lm-evaluation-harness/tree/FLOR-eval). |
|
|
|
The following is a list of evaluation areas and their respective datasets: |
|
- Reading Comprehension: [Belebele](https://huggingface.co./datasets/facebook/belebele) |
|
- Question Answering: [XQuAD](https://huggingface.co./datasets/xquad), [CatalanQA](https://huggingface.co./datasets/projecte-aina/catalanqa), [CoQCat](https://huggingface.co./datasets/projecte-aina/CoQCat) |
|
- Natural Language Inference: [XNLI](https://huggingface.co./datasets/xnli) and its translation to Catalan ([XNLI-ca](https://huggingface.co./datasets/projecte-aina/xnli-ca)), [TE-ca](https://huggingface.co./datasets/projecte-aina/teca) |
|
- Paraphrase Identification: [PAWS-X](https://huggingface.co./datasets/paws-x) and its translation to Catalan ([PAWS-ca](https://huggingface.co./datasets/projecte-aina/PAWS-ca)), [Parafraseja](https://huggingface.co./datasets/projecte-aina/Parafraseja) |
|
- Commonsense Reasoning: [COPA](https://people.ict.usc.edu/~gordon/copa.html) and its translation to Catalan ([COPA-ca](https://huggingface.co./datasets/projecte-aina/COPA-ca)) |
|
- Translation: [FLoRes](https://huggingface.co./datasets/flores) |
|
|
|
### Results |
|
|
|
| Dataset | Lang. | Task | FLOR-6.3B | BLOOM-7.1B | |
|
|-------------|--------|----------------------------|-------------|-------------| |
|
| Teca | ca | Natural Language Inference | **49.79**🔥 | 46.91 | |
|
| XNLI | ca | Natural Language Inference | **51.70**🔥 | 49.20 | |
|
| XNLI | es | Natural Language Inference | **50.28**🔥 | 47.62 | |
|
| XNLI | en | Natural Language Inference | **52.55**🔥 | 51.96 | |
|
| Belebele | ca | Reading Comprehension | **48.98**🔥 | 48.57 | |
|
| Belebele | es | Reading Comprehension | **48.16** | **48.16** | |
|
| Belebele | en | Reading Comprehension | 49.80 | **50.20**🔥 | |
|
| CatalanQA | ca | Question Answering | **71.80**🔥 | 69.54 | |
|
| CoQCat | ca | Question Answering | **65.96**🔥 | 58.49 | |
|
| XQuAD | ca | Question Answering | 59.01 | **60.94**🔥 | |
|
| XQuAD | es | Question Answering | **63.80**🔥 | 61.76 | |
|
| XQuAD | en | Question Answering | **70.02**🔥 | 69.76 | |
|
| COPA | ca | Question Answering | **78.00**🔥 | 72.60 | |
|
| COPA | en | Question Answering | **81.00**🔥 | 79.00 | |
|
| XStoryCloze | es | Question Answering | **69.82**🔥 | 66.45 | |
|
| XStoryCloze | en | Question Answering | **74.45**🔥 | 70.81 | |
|
| Parafraseja | ca | Paraphrase Identification | **62.88**🔥 | 60.27 | |
|
| PAWS-X | ca | Paraphrase Identification | **59.70**🔥 | 59.35 | |
|
| PAWS-X | es | Paraphrase Identification | 57.70 | **58.65**🔥 | |
|
| PAWS-X | en | Paraphrase Identification | 59.65 | **62.85**🔥 | |
|
| FLoRes | ca->es | Machine Translation | **24.98**🔥 | 24.21 | |
|
| FLoRes | es->ca | Machine Translation | **25.24**🔥 | 23.19 | |
|
| FLoRes | ca->en | Machine Translation | **42.89**🔥 | 40.93 | |
|
| FLoRes | en->ca | Machine Translation | **39.29**🔥 | 34.30 | |
|
| FLoRes | es->en | Machine Translation | **28.61**🔥 | 27.48 | |
|
| FLoRes | en->es | Machine Translation | **25.35**🔥 | 23.72 | |
|
|
|
Note: The metrics are F1-score for question-answering tasks, BLEU for translation, and accuracy for the rest. |
|
|
|
## Additional information |
|
|
|
### Author |
|
The Language Technologies Unit from Barcelona Supercomputing Center. |
|
|
|
### Contact |
|
For further information, please send an email to <[email protected]>. |
|
|
|
### Copyright |
|
Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center. |
|
|
|
### License |
|
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) |
|
|
|
### Funding |
|
This work was funded by [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). |
|
|
|
### Disclaimer |
|
|
|
<details> |
|
<summary>Click to expand</summary> |
|
|
|
The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0. |
|
|
|
Be aware that the model may have biases and/or any other undesirable distortions. |
|
|
|
When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it) |
|
or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and, |
|
in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. |
|
|
|
In no event shall the owner and creator of the model (Barcelona Supercomputing Center) |
|
be liable for any results arising from the use made by third parties. |
|
|
|
</details> |