GPT-Generated Unified Format (GGUF)
Collection
ease of reading
•
51 items
•
Updated
•
10
Feynman-Grpo-Exp-GGUF is based on the Qwen 0.5B modality architecture, designed to enhance the reasoning capabilities of smaller models. It has been fine-tuned using the GRPO trainer on the OpenAI GSM8K dataset, enabling the model to excel in reinforcement learning, complex reasoning, and logical problem-solving. The model demonstrates significant improvements in context understanding, structured data processing, and long-context comprehension, making it ideal for advanced reasoning tasks, instruction-following, and text generation.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/Feynman-Grpo-Exp"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "system", "content": "You are an advanced AI assistant with expert-level reasoning and knowledge."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
Base model
Qwen/Qwen2.5-0.5B