metadata
base_model: pritamdeka/assamese-bert-nli-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:CosineSimilarityLoss
widget:
- source_sentence: >-
আমি "... comoving মহাজাগতিক বিশ্ৰাম ফ্ৰেমৰ তুলনাত ... সিংহ নক্ষত্ৰমণ্ডলৰ
ফালে কিছু 371 কিলোমিটাৰ প্ৰতি ছেকেণ্ডত" আগবাঢ়িছো.
sentences:
- বাস্কেটবল খেলুৱৈগৰাকীয়ে নিজৰ দলৰ হৈ পইণ্ট লাভ কৰিবলৈ ওলাইছে।
- আন কোনো বস্তুৰ লগত আপেক্ষিক নহোৱা কোনো ‘ষ্টিল’ নাই।
- এজনী ছোৱালীয়ে বতাহ বাদ্যযন্ত্ৰ বজায়।
- source_sentence: চাৰিটা ল’ৰা-ছোৱালীয়ে ভঁৰালৰ জীৱ-জন্তুবোৰলৈ চাই আছে।
sentences:
- ডাইনিং টেবুল এখনৰ চাৰিওফালে বৃদ্ধৰ দল এটাই পোজ দিছে।
- বিকিনি পিন্ধা চাৰিগৰাকী মহিলাই বিলত ভলীবল খেলি আছে।
- ল’ৰা-ছোৱালীয়ে ভেড়া চাই।
- source_sentence: ডালত বহি থকা দুটা টান ঈগল।
sentences:
- জাতৰ জেব্ৰা ডানিঅ’ অত্যন্ত কঠোৰ মাছ, ইহঁতক হত্যা কৰাটো প্ৰায় কঠিন।
- এটা ডালত দুটা ঈগল বহি আছে।
- >-
নূন্যতম মজুৰিৰ আইনসমূহে কম দক্ষ, কম উৎপাদনশীল লোকক আটাইতকৈ বেছি আঘাত
দিয়ে।
- source_sentence: >-
"মই আচলতে যি বিচাৰিছো সেয়া হৈছে মুছলমান জনসংখ্যাৰ এটা অনুমান..." @ThanosK
আৰু @T.E.D., এটা সামগ্ৰিক, সাধাৰণ জনসংখ্যাৰ অনুমান f.e.
sentences:
- এগৰাকী মহিলাই সেউজীয়া পিঁয়াজ কাটি আছে।
- >-
তলত দিয়া কথাখিনি মোৰ কুকুৰ কাণৰ দৰে কপিৰ পৰা লোৱা হৈছে নিউ পেংগুইন
এটলাছ অৱ মেডিভেল হিষ্ট্ৰীৰ।
- আমাৰ দৰে সৌৰজগতৰ কোনো তাৰকাৰাজ্যৰ বাহিৰত থকাটো সম্ভৱ হ’ব পাৰে।
- source_sentence: ইণ্টাৰনেট কেমেৰাৰ জৰিয়তে এগৰাকী ছোৱালীৰ লগত কথা পাতিলে মানুহজনে।
sentences:
- গছৰ শাৰী এটাৰ সন্মুখত পথাৰত ভেড়া চৰিছে।
- এজন মানুহে গীটাৰ বজাই আছে।
- ৱেবকেমৰ জৰিয়তে এগৰাকী ছোৱালীৰ সৈতে কথা পাতিছে এজন কিশোৰে।
model-index:
- name: SentenceTransformer based on pritamdeka/assamese-bert-nli-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: pritamdeka/stsb assamese translated dev
type: pritamdeka/stsb-assamese-translated-dev
metrics:
- type: pearson_cosine
value: 0.8582086169969396
name: Pearson Cosine
- type: spearman_cosine
value: 0.8558833817052474
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8402288134127139
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8466669319881411
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8401702610820984
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.846937443225358
name: Spearman Euclidean
- type: pearson_dot
value: 0.8293854931734366
name: Pearson Dot
- type: spearman_dot
value: 0.8279065905764471
name: Spearman Dot
- type: pearson_max
value: 0.8582086169969396
name: Pearson Max
- type: spearman_max
value: 0.8558833817052474
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: pritamdeka/stsb assamese translated test
type: pritamdeka/stsb-assamese-translated-test
metrics:
- type: pearson_cosine
value: 0.8231106499789409
name: Pearson Cosine
- type: spearman_cosine
value: 0.8235370017309012
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8131384280231726
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.817044158823682
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8132779879142208
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8170404249477559
name: Spearman Euclidean
- type: pearson_dot
value: 0.7896666837864712
name: Pearson Dot
- type: spearman_dot
value: 0.7870703093898731
name: Spearman Dot
- type: pearson_max
value: 0.8231106499789409
name: Pearson Max
- type: spearman_max
value: 0.8235370017309012
name: Spearman Max
SentenceTransformer based on pritamdeka/assamese-bert-nli-v2
This is a sentence-transformers model finetuned from pritamdeka/assamese-bert-nli-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: pritamdeka/assamese-bert-nli-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pritamdeka/assamese-bert-nli-v2-assamese-sts")
# Run inference
sentences = [
'ইণ্টাৰনেট কেমেৰাৰ জৰিয়তে এগৰাকী ছোৱালীৰ লগত কথা পাতিলে মানুহজনে।',
'ৱেবকেমৰ জৰিয়তে এগৰাকী ছোৱালীৰ সৈতে কথা পাতিছে এজন কিশোৰে।',
'এজন মানুহে গীটাৰ বজাই আছে।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
pritamdeka/stsb-assamese-translated-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8582 |
spearman_cosine | 0.8559 |
pearson_manhattan | 0.8402 |
spearman_manhattan | 0.8467 |
pearson_euclidean | 0.8402 |
spearman_euclidean | 0.8469 |
pearson_dot | 0.8294 |
spearman_dot | 0.8279 |
pearson_max | 0.8582 |
spearman_max | 0.8559 |
Semantic Similarity
- Dataset:
pritamdeka/stsb-assamese-translated-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8231 |
spearman_cosine | 0.8235 |
pearson_manhattan | 0.8131 |
spearman_manhattan | 0.817 |
pearson_euclidean | 0.8133 |
spearman_euclidean | 0.817 |
pearson_dot | 0.7897 |
spearman_dot | 0.7871 |
pearson_max | 0.8231 |
spearman_max | 0.8235 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pritamdeka/stsb-assamese-translated-dev_spearman_cosine | pritamdeka/stsb-assamese-translated-test_spearman_cosine |
---|---|---|---|---|---|
0.2778 | 100 | 0.0316 | 0.0274 | 0.8415 | - |
0.5556 | 200 | 0.0306 | 0.0280 | 0.8392 | - |
0.8333 | 300 | 0.0282 | 0.0280 | 0.8462 | - |
1.1111 | 400 | 0.0208 | 0.0277 | 0.8482 | - |
1.3889 | 500 | 0.0148 | 0.0271 | 0.8494 | - |
1.6667 | 600 | 0.0136 | 0.0259 | 0.8503 | - |
1.9444 | 700 | 0.0137 | 0.0259 | 0.8525 | - |
2.2222 | 800 | 0.0089 | 0.0262 | 0.8519 | - |
2.5 | 900 | 0.0074 | 0.0255 | 0.8551 | - |
2.7778 | 1000 | 0.0071 | 0.0256 | 0.8544 | - |
3.0556 | 1100 | 0.0068 | 0.0258 | 0.8558 | - |
3.3333 | 1200 | 0.005 | 0.0253 | 0.8565 | - |
3.6111 | 1300 | 0.0046 | 0.0259 | 0.8547 | - |
3.8889 | 1400 | 0.0046 | 0.0257 | 0.8559 | - |
4.0 | 1440 | - | - | - | 0.8235 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}