lora-flan-t5-small / README.md
pritam3355's picture
Upload model
0f55a31
|
raw
history blame
1.5 kB
metadata
license: apache-2.0
base_model: google/flan-t5-small
tags:
  - generated_from_trainer
datasets:
  - samsum
model-index:
  - name: lora-flan-t5-small
    results: []
library_name: peft

lora-flan-t5-small

This model is a fine-tuned version of google/flan-t5-small on the samsum dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: True
  • load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Framework versions

  • PEFT 0.4.0
  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3