priamai's picture
End of training
62c0ae3 verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - anno_ctr
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: annoctr_bert_uncased
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: anno_ctr
          type: anno_ctr
          config: all_tags
          split: test
          args: all_tags
        metrics:
          - name: Precision
            type: precision
            value: 0.7928388746803069
          - name: Recall
            type: recall
            value: 0.7809920945182869
          - name: F1
            type: f1
            value: 0.7868708971553611
          - name: Accuracy
            type: accuracy
            value: 0.936522196415268

annoctr_bert_uncased

This model is a fine-tuned version of bert-base-uncased on the anno_ctr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3322
  • Precision: 0.7928
  • Recall: 0.7810
  • F1: 0.7869
  • Accuracy: 0.9365

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.54 1.0 474 0.3452 0.6983 0.6601 0.6786 0.9137
0.3013 2.0 948 0.3466 0.7774 0.7018 0.7376 0.9240
0.0392 3.0 1422 0.3071 0.7851 0.7517 0.7680 0.9303
0.5695 4.0 1896 0.2941 0.7810 0.7617 0.7712 0.9334
0.0021 5.0 2370 0.3109 0.7928 0.7720 0.7823 0.9351
0.0419 6.0 2844 0.3020 0.7772 0.7796 0.7784 0.9341
0.2979 7.0 3318 0.3169 0.8019 0.7814 0.7915 0.9374
0.0017 8.0 3792 0.3260 0.7972 0.7778 0.7874 0.9365
0.0166 9.0 4266 0.3349 0.7935 0.7789 0.7861 0.9364
0.0685 10.0 4740 0.3322 0.7928 0.7810 0.7869 0.9365

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1