metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-qqp-epochs-2-lr-0.0001
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: qqp
split: train
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.95
- name: F1
type: f1
value: 0.9333333333333333
bert-base-uncased-qqp-epochs-2-lr-0.0001
This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.1358
- Accuracy: 0.95
- F1: 0.9333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 28
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.2907 | 1.0 | 11368 | 0.1955 | 0.95 | 0.9315 |
0.191 | 2.0 | 22736 | 0.1358 | 0.95 | 0.9333 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3