bert-base-uncased-mrpc-lora-epochs-10-lr-0.0005
This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 1.1795
- Accuracy: 0.8
- F1: 0.8611
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 28
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 112 | 0.5047 | 0.76 | 0.8333 |
No log | 2.0 | 224 | 0.4400 | 0.78 | 0.8358 |
No log | 3.0 | 336 | 0.5103 | 0.78 | 0.8406 |
No log | 4.0 | 448 | 0.6321 | 0.78 | 0.8382 |
0.3586 | 5.0 | 560 | 0.8909 | 0.73 | 0.8 |
0.3586 | 6.0 | 672 | 0.8763 | 0.77 | 0.8369 |
0.3586 | 7.0 | 784 | 1.0331 | 0.8 | 0.8571 |
0.3586 | 8.0 | 896 | 1.1871 | 0.8 | 0.8611 |
0.0479 | 9.0 | 1008 | 1.1310 | 0.79 | 0.8552 |
0.0479 | 10.0 | 1120 | 1.1795 | 0.8 | 0.8611 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3
Model tree for prateeky2806/bert-base-uncased-mrpc-lora-epochs-10-lr-0.0005
Base model
google-bert/bert-base-uncased