pranjali06's picture
End of training
1b51076 verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-large
tags:
  - generated_from_trainer
datasets:
  - common_voice_1_0
metrics:
  - wer
model-index:
  - name: whisper-large-english-TG
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice
          type: common_voice_1_0
          config: en
          split: None
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 18.00053310232233

whisper-large-english-TG

This model is a fine-tuned version of openai/whisper-large on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4494
  • Wer: 18.0005

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0452 2.6350 1000 0.3455 19.6915
0.0034 5.2701 2000 0.3999 17.8823
0.0005 7.9051 3000 0.4770 18.1438
0.0001 10.5402 4000 0.4494 18.0005

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1