metadata
library_name: transformers
language:
- hi
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- pranetk/paraspeak-data-new-stitched3
metrics:
- wer
model-index:
- name: Paraspeak Medium Test 6
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Paraspeak Hyperaugmented Dataset 2.0
type: pranetk/paraspeak-data-new-stitched3
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 0.055991041433370664
Paraspeak Medium Test 6
This model is a fine-tuned version of openai/whisper-medium on the Paraspeak Hyperaugmented Dataset 2.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0008
- Wer: 0.0560
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 7
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3433 | 0.1721 | 100 | 0.2304 | 32.6708 |
0.0793 | 0.3442 | 200 | 0.1057 | 16.1814 |
0.0786 | 0.5164 | 300 | 0.0822 | 18.7850 |
0.0473 | 0.6885 | 400 | 0.0412 | 7.5868 |
0.0518 | 0.8606 | 500 | 0.0374 | 5.9910 |
0.0249 | 1.0327 | 600 | 0.0305 | 5.0392 |
0.0638 | 1.2048 | 700 | 0.0279 | 6.0470 |
0.013 | 1.3769 | 800 | 0.0266 | 3.6394 |
0.0117 | 1.5491 | 900 | 0.0169 | 3.1355 |
0.0011 | 1.7212 | 1000 | 0.0101 | 2.2116 |
0.0058 | 1.8933 | 1100 | 0.0112 | 1.5957 |
0.0021 | 2.0654 | 1200 | 0.0119 | 1.4558 |
0.0014 | 2.2375 | 1300 | 0.0086 | 1.4278 |
0.0062 | 2.4096 | 1400 | 0.0103 | 1.3158 |
0.0063 | 2.5818 | 1500 | 0.0135 | 2.0157 |
0.013 | 2.7539 | 1600 | 0.0116 | 1.7637 |
0.0019 | 2.9260 | 1700 | 0.0068 | 0.8399 |
0.0131 | 3.0981 | 1800 | 0.0118 | 0.6719 |
0.002 | 3.2702 | 1900 | 0.0073 | 0.7279 |
0.0002 | 3.4423 | 2000 | 0.0057 | 0.5039 |
0.0001 | 3.6145 | 2100 | 0.0036 | 0.4199 |
0.0226 | 3.7866 | 2200 | 0.0066 | 0.5319 |
0.0038 | 3.9587 | 2300 | 0.0020 | 0.1400 |
0.0297 | 4.1308 | 2400 | 0.0045 | 0.3080 |
0.0 | 4.3029 | 2500 | 0.0026 | 0.0840 |
0.0 | 4.4750 | 2600 | 0.0040 | 0.3359 |
0.0 | 4.6472 | 2700 | 0.0006 | 0.0560 |
0.0 | 4.8193 | 2800 | 0.0009 | 0.0840 |
0.0 | 4.9914 | 2900 | 0.0010 | 0.0840 |
0.0 | 5.1635 | 3000 | 0.0021 | 0.0560 |
0.0 | 5.3356 | 3100 | 0.0021 | 0.2520 |
0.0102 | 5.5077 | 3200 | 0.0020 | 0.1960 |
0.0 | 5.6799 | 3300 | 0.0013 | 0.0560 |
0.0 | 5.8520 | 3400 | 0.0011 | 0.0560 |
0.0 | 6.0241 | 3500 | 0.0010 | 0.0560 |
0.0 | 6.1962 | 3600 | 0.0011 | 0.0560 |
0.0 | 6.3683 | 3700 | 0.0012 | 0.0560 |
0.0 | 6.5404 | 3800 | 0.0012 | 0.0560 |
0.0 | 6.7126 | 3900 | 0.0008 | 0.0560 |
0.0 | 6.8847 | 4000 | 0.0008 | 0.0560 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3