pranetk's picture
End of training
6f4598a verified
metadata
library_name: transformers
language:
  - hi
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - pranetk/paraspeak-data-new-stitched3
metrics:
  - wer
model-index:
  - name: Paraspeak Medium Test 6
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Paraspeak Hyperaugmented Dataset 2.0
          type: pranetk/paraspeak-data-new-stitched3
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.055991041433370664

Paraspeak Medium Test 6

This model is a fine-tuned version of openai/whisper-medium on the Paraspeak Hyperaugmented Dataset 2.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0008
  • Wer: 0.0560

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 7
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3433 0.1721 100 0.2304 32.6708
0.0793 0.3442 200 0.1057 16.1814
0.0786 0.5164 300 0.0822 18.7850
0.0473 0.6885 400 0.0412 7.5868
0.0518 0.8606 500 0.0374 5.9910
0.0249 1.0327 600 0.0305 5.0392
0.0638 1.2048 700 0.0279 6.0470
0.013 1.3769 800 0.0266 3.6394
0.0117 1.5491 900 0.0169 3.1355
0.0011 1.7212 1000 0.0101 2.2116
0.0058 1.8933 1100 0.0112 1.5957
0.0021 2.0654 1200 0.0119 1.4558
0.0014 2.2375 1300 0.0086 1.4278
0.0062 2.4096 1400 0.0103 1.3158
0.0063 2.5818 1500 0.0135 2.0157
0.013 2.7539 1600 0.0116 1.7637
0.0019 2.9260 1700 0.0068 0.8399
0.0131 3.0981 1800 0.0118 0.6719
0.002 3.2702 1900 0.0073 0.7279
0.0002 3.4423 2000 0.0057 0.5039
0.0001 3.6145 2100 0.0036 0.4199
0.0226 3.7866 2200 0.0066 0.5319
0.0038 3.9587 2300 0.0020 0.1400
0.0297 4.1308 2400 0.0045 0.3080
0.0 4.3029 2500 0.0026 0.0840
0.0 4.4750 2600 0.0040 0.3359
0.0 4.6472 2700 0.0006 0.0560
0.0 4.8193 2800 0.0009 0.0840
0.0 4.9914 2900 0.0010 0.0840
0.0 5.1635 3000 0.0021 0.0560
0.0 5.3356 3100 0.0021 0.2520
0.0102 5.5077 3200 0.0020 0.1960
0.0 5.6799 3300 0.0013 0.0560
0.0 5.8520 3400 0.0011 0.0560
0.0 6.0241 3500 0.0010 0.0560
0.0 6.1962 3600 0.0011 0.0560
0.0 6.3683 3700 0.0012 0.0560
0.0 6.5404 3800 0.0012 0.0560
0.0 6.7126 3900 0.0008 0.0560
0.0 6.8847 4000 0.0008 0.0560

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3