Pramav / api.py
pranavajay's picture
Update api.py
0595731 verified
raw
history blame
34.5 kB
import os
import torch
import boto3
import random
import string
import numpy as np
import logging
import datetime
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException, Request, Response
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, constr, conint
from diffusers import FluxPipeline
from diffusers.pipelines import FluxImg2ImgPipeline
from diffusers.pipelines import FluxInpaintPipeline
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.pipelines import FluxControlNetPipeline
from diffusers.pipelines import FluxControlNetInpaintPipeline
from diffusers.models import FluxControlNetModel
from diffusers.utils import load_image
from PIL import Image
from collections import defaultdict
import time
# Setup logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("error.txt"),
logging.StreamHandler()
])
app = FastAPI()
# Allow CORS for specific origins if needed
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Update with specific domains as necessary
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
MAX_SEED = np.iinfo(np.int32).max
# AWS S3 Configuration
AWS_ACCESS_KEY_ID = "your-access-key-id"
AWS_SECRET_ACCESS_KEY = "your-secret-access-key"
AWS_REGION = "your-region"
S3_BUCKET_NAME = "your-bucket-name"
# Initialize S3 client
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
# Asynchronously log requests
async def log_requests(user_key: str, prompt: str):
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_entry = f"{timestamp}, {user_key}, {prompt}\n"
async with aiofiles.open("key_requests.txt", "a") as log_file:
await log_file.write(log_entry)
# Asynchronously upload image to S3
async def upload_image_to_s3(image_path: str, s3_path: str):
try:
s3_client.upload_file(image_path, S3_BUCKET_NAME, s3_path)
return f"https://{S3_BUCKET_NAME}.s3.{AWS_REGION}.amazonaws.com/{s3_path}"
except Exception as e:
logging.error(f"Error uploading image to S3: {e}")
raise HTTPException(status_code=500, detail=f"Image upload failed: {str(e)}")
# Generate a random sequence of 12 numbers and 11 words
def generate_random_sequence():
random_numbers = ''.join(random.choices(string.digits, k=12)) # 12 random digits
random_words = ''.join(random.choices(string.ascii_lowercase, k=11)) # 11 random letters
return f"{random_numbers}_{random_words}"
# Load the default pipeline once globally for efficiency
flux_pipe = FluxPipeline.from_pretrained("pranavajay/flow", torch_dtype=torch.bfloat16)
flux_pipe.enable_model_cpu_offload()
logging.info("FluxPipeline loaded successfully.")
img_pipe = FluxImg2ImgPipeline.from_pretrained("pranavajay/flow", torch_dtype=torch.bfloat16)
img_pipe.enable_model_cpu_offload()
logging.info("FluxImg2ImgPipeline loaded successfully.")
inpainting_pipe = FluxImg2ImgPipeline.from_pretrained("pranavajay/flow", torch_dtype=torch.bfloat16)
inpainting_pipe.enable_model_cpu_offload()
logging.info("FluxInpaintPipeline loaded successfully.")
video = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V", torch_dtype=torch.bfloat16
)
video.enable_sequential_cpu_offload()
video.vae.enable_tiling()
video.vae.enable_slicing()
logging.info("CogVideoXImageToVideoPipeline loaded successfully.")
flux_controlnet_pipe = None
# Rate limiting variables
request_timestamps = defaultdict(list) # Store timestamps of requests per user key
RATE_LIMIT = 30 # Maximum requests allowed
TIME_WINDOW = 5 # Time window in seconds
# Available LoRA styles and ControlNet adapters
style_lora_mapping = {
"Uncensored": {"path": "enhanceaiteam/Flux-uncensored", "triggered_word": "nsfw"},
"Logo": {"path": "Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design", "triggered_word": "logo"},
"Yarn": {"path": "Shakker-Labs/FLUX.1-dev-LoRA-MiaoKa-Yarn-World", "triggered_word": "mkym this is made of wool"},
"Anime": {"path": "prithivMLmods/Canopus-LoRA-Flux-Anime", "triggered_word": "anime"},
"Comic": {"path": "wkplhc/comic", "triggered_word": "comic"}
}
adapter_controlnet_mapping = {
"Canny": "InstantX/FLUX.1-dev-controlnet-canny",
"Depth": "Shakker-Labs/FLUX.1-dev-ControlNet-Depth",
"Pose": "Shakker-Labs/FLUX.1-dev-ControlNet-Pose",
"Upscale": "jasperai/Flux.1-dev-Controlnet-Upscaler"
}
# Request model for query parameters
class GenerateImageRequest(BaseModel):
prompt: constr(min_length=1) # Ensures prompt is not empty
guidance_scale: float = 7.5
seed: conint(ge=0, le=MAX_SEED) = 42
randomize_seed: bool = False
height: conint(gt=0) = 768
width: conint(gt=0) = 1360
control_image_url: str = "https://enhanceai.s3.amazonaws.com/792e2322-77fe-4070-aac4-7fa8d9e29c11_1.png"
controlnet_conditioning_scale: float = 0.6
num_inference_steps: conint(gt=0) = 50
num_images_per_prompt: conint(gt=0, le=5) = 1 # Limit to max 5 images per request
style: str = None # Optional LoRA style
adapter: str = None # Optional ControlNet adapter
user_key: str # API user key
# Apply LoRA style to the prompt
async def apply_lora_style(pipe, style, prompt):
if style in style_lora_mapping:
lora_path = style_lora_mapping[style]["path"]
triggered_word = style_lora_mapping[style]["triggered_word"]
pipe.load_lora_weights(lora_path)
return f"{triggered_word} {prompt}"
return prompt
# Set ControlNet adapter for the pipeline
async def set_controlnet_adapter(adapter: str, is_inpainting: bool = False):
global flux_controlnet_pipe
if adapter not in adapter_controlnet_mapping:
raise ValueError(f"Invalid ControlNet adapter: {adapter}")
controlnet_model_path = adapter_controlnet_mapping[adapter]
controlnet = FluxControlNetModel.from_pretrained(controlnet_model_path, torch_dtype=torch.bfloat16)
pipeline_cls = FluxControlNetPipeline if not is_inpainting else FluxControlNetInpaintPipeline
flux_controlnet_pipe = pipeline_cls.from_pretrained(
"pranavajay/flow", controlnet=controlnet, torch_dtype=torch.bfloat16
)
flux_controlnet_pipe.to("cuda")
logging.info(f"ControlNet adapter '{adapter}' loaded successfully.")
# Rate limit user requests
async def rate_limit(user_key: str):
current_time = time.time()
request_timestamps[user_key] = [t for t in request_timestamps[user_key] if current_time - t < TIME_WINDOW]
if len(request_timestamps[user_key]) >= RATE_LIMIT:
logging.info(f"Rate limit exceeded for user_key: {user_key}")
return False
request_timestamps[user_key].append(current_time)
return True
@app.post("/text_to_image/")
async def generate_image(req: GenerateImageRequest):
seed = req.seed or random.randint(0, MAX_SEED)
# Rate limit check
if not await rate_limit(req.user_key):
await log_requests(req.user_key, req.prompt)
retries = 3 # Number of retries for transient errors
for attempt in range(retries):
try:
# Check if prompt is None or empty
if not req.prompt or req.prompt.strip() == "":
raise ValueError("Prompt cannot be empty.")
original_prompt = req.prompt # Save the original prompt
# Set ControlNet if adapter is provided
if req.adapter:
try:
await set_controlnet_adapter(req.adapter)
except Exception as e:
logging.error(f"Error setting ControlNet adapter: {e}")
raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}")
await apply_lora_style(flux_controlnet_pipe, req.style, req.prompt)
# Load control image asynchronously
try:
loop = asyncio.get_running_loop()
control_image = await loop.run_in_executor(None, load_image, req.control_image_url)
except Exception as e:
logging.error(f"Error loading control image from URL: {e}")
raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.")
# Image generation with ControlNet
try:
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
images = await loop.run_in_executor(None, flux_controlnet_pipe, {
"prompt": req.prompt,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"control_image": control_image,
"generator": generator,
"controlnet_conditioning_scale": req.controlnet_conditioning_scale
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images with ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation with ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
else:
# Image generation without ControlNet
try:
await apply_lora_style(flux_pipe, req.style, req.prompt)
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
images = await loop.run_in_executor(None, flux_pipe, {
"prompt": req.prompt,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"generator": generator
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images without ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation without ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
# Saving images and uploading to S3 asynchronously
image_urls = []
for img in images:
image_path = f"generated_images/{generate_random_sequence()}.png"
await loop.run_in_executor(None, img.save, image_path)
image_url = await upload_image_to_s3(image_path, image_path)
image_urls.append(image_url)
os.remove(image_path) # Clean up local files after upload
return {
"status": "success",
"output": image_urls,
"prompt": original_prompt,
"height": req.height,
"width": req.width,
"scale": req.guidance_scale,
"steps": req.num_inference_steps,
"style": req.style,
"adapter": req.adapter
}
except Exception as e:
logging.error(f"Attempt {attempt + 1} failed: {e}")
if attempt == retries - 1: # Last attempt
raise HTTPException(status_code=500, detail=f"Failed to generate image after multiple attempts: {str(e)}")
continue # Retry on transient errors
class GenerateImageToImageRequest(BaseModel):
prompt: str = None # Prompt can be None
image: str = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
strength: float = 0.7
guidance_scale: float = 7.5
seed: conint(ge=0, le=MAX_SEED) = 42
randomize_seed: bool = False
height: conint(gt=0) = 768
width: conint(gt=0) = 1360
control_image_url: str = None # Optional ControlNet image
controlnet_conditioning_scale: float = 0.6
num_inference_steps: conint(gt=0) = 50
num_images_per_prompt: conint(gt=0, le=5) = 1
style: str = None # Optional LoRA style
adapter: str = None # Optional ControlNet adapter
user_key: str # API user key
@app.post("/image_to_image/")
async def generate_image_to_image(req: GenerateImageToImageRequest):
seed = req.seed
original_prompt = req.prompt
modified_prompt = original_prompt
# Check if user is exceeding rate limit
if not await rate_limit(req.user_key):
await log_requests(req.user_key, req.prompt if req.prompt else "No prompt")
raise HTTPException(status_code=429, detail="Rate limit exceeded")
retries = 3 # Number of retries for transient errors
loop = asyncio.get_running_loop()
for attempt in range(retries):
try:
# Check if prompt is None or empty
if not req.prompt or req.prompt.strip() == "":
raise ValueError("Prompt cannot be empty.")
original_prompt = req.prompt # Save the original prompt
# Set ControlNet if adapter is provided
if req.adapter:
try:
await set_controlnet_adapter(req.adapter)
except Exception as e:
logging.error(f"Error setting ControlNet adapter: {e}")
raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}")
await apply_lora_style(flux_controlnet_pipe, req.style, req.prompt)
# Load control image asynchronously
try:
control_image = await loop.run_in_executor(None, load_image, req.control_image_url)
except Exception as e:
logging.error(f"Error loading control image from URL: {e}")
raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.")
# Image generation with ControlNet
try:
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
images = await loop.run_in_executor(None, flux_controlnet_pipe, {
"prompt": modified_prompt,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"control_image": control_image,
"generator": generator,
"controlnet_conditioning_scale": req.controlnet_conditioning_scale
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images with ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation with ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
else:
# Image generation without ControlNet
try:
await apply_lora_style(img_pipe, req.style, req.prompt)
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
source = await loop.run_in_executor(None, load_image, req.image)
images = await loop.run_in_executor(None, img_pipe, {
"prompt": modified_prompt,
"image": source,
"strength": req.strength,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"generator": generator
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images without ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation without ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
# Saving images and uploading to S3 asynchronously
image_urls = []
for img in images:
image_path = f"generated_images/{generate_random_sequence()}.png"
await loop.run_in_executor(None, img.save, image_path)
image_url = await upload_image_to_s3(image_path, image_path)
image_urls.append(image_url)
os.remove(image_path) # Clean up local files after upload
return {
"status": "success",
"output": image_urls,
"prompt": original_prompt,
"height": req.height,
"width": req.width,
"image": req.image,
"strength": req.strength,
"scale": req.guidance_scale,
"steps": req.num_inference_steps,
"style": req.style,
"adapter": req.adapter
}
except Exception as e:
logging.error(f"Attempt {attempt + 1} failed: {e}")
if attempt == retries - 1: # Last attempt
raise HTTPException(status_code=500, detail=f"Failed to generate image after multiple attempts: {str(e)}")
continue # Retry on transient errors
class GenerateInpaintingRequest(BaseModel):
prompt: str = None # Prompt can be None
image: str = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_image: str = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
guidance_scale: float = 7.5
seed: conint(ge=0, le=MAX_SEED) = 42
randomize_seed: bool = False
height: conint(gt=0) = 768
width: conint(gt=0) = 1360
control_image_url: str = None # Optional ControlNet image
controlnet_conditioning_scale: float = 0.6
num_inference_steps: conint(gt=0) = 50
num_images_per_prompt: conint(gt=0, le=5) = 1
style: str = None # Optional LoRA style
adapter: str = None # Optional ControlNet adapter
user_key: str # API user key
@app.post("/inpainting/")
async def generate_inpainting(req: GenerateInpaintingRequest):
seed = req.seed
original_prompt = req.prompt
modified_prompt = original_prompt
# Check if user is exceeding rate limit
if not await rate_limit(req.user_key):
await log_requests(req.user_key, req.prompt if req.prompt else "No prompt")
raise HTTPException(status_code=429, detail="Rate limit exceeded")
retries = 3 # Number of retries for transient errors
loop = asyncio.get_running_loop()
for attempt in range(retries):
try:
# Check if prompt is None or empty
if not req.prompt or req.prompt.strip() == "":
raise ValueError("Prompt cannot be empty.")
# Set ControlNet if adapter is provided
if req.adapter:
try:
await set_controlnet_adapter(req.adapter, is_inpainting=True)
except Exception as e:
logging.error(f"Error setting ControlNet adapter: {e}")
raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}")
await apply_lora_style(flux_inpainting_controlnet_pipe, req.style, req.prompt)
# Load control image asynchronously
try:
control_image = await loop.run_in_executor(None, load_image, req.control_image_url)
except Exception as e:
logging.error(f"Error loading control image from URL: {e}")
raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.")
# Image generation with ControlNet
try:
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
source = await loop.run_in_executor(None, load_image, req.image)
mask = await loop.run_in_executor(None, load_image, req.mask_image)
images = await loop.run_in_executor(None, flux_controlnet_pipe, {
"prompt": modified_prompt,
"image": source,
"mask_image": mask,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"control_image": control_image,
"generator": generator,
"controlnet_conditioning_scale": req.controlnet_conditioning_scale
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images with ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation with ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
else:
# Image generation without ControlNet
try:
await apply_lora_style(inpainting_pipe, req.style, req.prompt)
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
source = await loop.run_in_executor(None, load_image, req.image)
mask = await loop.run_in_executor(None, load_image, req.mask_image)
images = await loop.run_in_executor(None, inpainting_pipe, {
"prompt": modified_prompt,
"image": source,
"mask_image": mask,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"generator": generator
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images without ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation without ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
# Saving generated images
image_urls = []
for i, img in enumerate(images):
image_path = f"generated_images/inpainting_{generate_random_sequence()}.png"
img.save(image_path)
# Optionally, upload the image to S3
s3_path = f"inpainting/{original_prompt.replace(' ', '_')}_{generate_random_sequence()}_{i}.png"
s3_url = await upload_file_to_s3(image_path, s3_path)
image_urls.append(s3_url)
# Clean up temporary files
os.remove(image_path)
return {
"status": "success",
"output": image_urls,
"prompt": original_prompt,
"height": req.height,
"width": req.width,
"scale": req.guidance_scale,
"style": req.style,
"adapter": req.adapter
}
except Exception as e:
logging.error(f"Attempt {attempt + 1} failed: {e}")
if attempt == retries - 1: # Last attempt
raise HTTPException(status_code=500, detail=f"Failed to generate inpainting after multiple attempts: {str(e)}")
continue # Retry on transient errors
class GenerateVideoRequest(BaseModel):
prompt: constr(min_length=1) # Ensures prompt is not empty
guidance_scale: float = 7.5
seed: conint(ge=0, le=MAX_SEED) = 42
randomize_seed: bool = False
height: conint(gt=0) = 768
width: conint(gt=0) = 1360
control_image_url: str = "https://enhanceai.s3.amazonaws.com/792e2322-77fe-4070-aac4-7fa8d9e29c11_1.png"
controlnet_conditioning_scale: float = 0.6
num_inference_steps: conint(gt=0) = 50
num_images_per_prompt: conint(gt=0, le=5) = 1 # Limit to max 5 images per request
style: str = None # Optional LoRA style
adapter: str = None # Optional ControlNet adapter
user_key: str # API user key
@app.post("/text_to_video/")
async def generate_video(req: GenerateImageRequest):
seed = req.seed
if not rate_limit(req.user_key):
log_requests(req.user_key, req.prompt) # Log the request when rate limit is exceeded
retries = 3 # Number of retries for transient errors
s3_urls = [] # List to store S3 URLs of generated videos
loop = asyncio.get_running_loop() # Get the current event loop
for attempt in range(retries):
try:
# Check if prompt is None or empty
if not req.prompt or req.prompt.strip() == "":
raise ValueError("Prompt cannot be empty.")
original_prompt = req.prompt # Save the original prompt
# Set ControlNet if adapter is provided
if req.adapter:
try:
await set_controlnet_adapter(req.adapter)
except Exception as e:
logging.error(f"Error setting ControlNet adapter: {e}")
raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}")
# Load control image asynchronously
try:
control_image = await loop.run_in_executor(None, load_image, req.control_image_url)
except Exception as e:
logging.error(f"Error loading control image from URL: {e}")
raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.")
# Image generation with ControlNet
try:
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
images = await loop.run_in_executor(None, flux_controlnet_pipe, {
"prompt": original_prompt,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"control_image": control_image,
"generator": generator,
"controlnet_conditioning_scale": req.controlnet_conditioning_scale
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images with ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation with ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
else:
# Image generation without ControlNet
try:
await apply_lora_style(flux_pipe, req.style, req.prompt)
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
images = await loop.run_in_executor(None, flux_pipe, {
"prompt": original_prompt,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"generator": generator
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images without ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation without ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
# Saving images and uploading to S3
for i, img in enumerate(images):
image_path = f"generated_images/{generate_random_sequence()}.png"
# Save image asynchronously
await loop.run_in_executor(None, img.save, image_path)
# Generate video from the image
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
vido = await loop.run_in_executor(None, video, {
"prompt": original_prompt,
"image": image_path,
"num_videos_per_prompt": 1,
"num_inference_steps": req.num_inference_steps,
"num_frames": req.num_frames,
"guidance_scale": req.guidance_scale,
"generator": torch.Generator(device="cuda").manual_seed(seed)
})
# Export the video to a file asynchronously
video_path = f"generated_video_{i}_{generate_random_sequence()}.mp4"
await loop.run_in_executor(None, export_to_video, vido, video_path, 8)
# Upload the video to S3 asynchronously
s3_path = f"videos/{original_prompt.replace(' ', '_')}_{generate_random_sequence()}_{i}.mp4"
s3_url = await loop.run_in_executor(None, upload_file_to_s3, video_path, s3_path)
s3_urls.append(s3_url)
# Clean up temporary files
os.remove(image_path)
os.remove(video_path)
return {
"status": "success",
"output": s3_urls,
"prompt": original_prompt,
"height": req.height,
"width": req.width,
"num_frames": req.num_frames,
"scale": req.guidance_scale,
"style": req.style,
"adapter": req.adapter
}
except Exception as e:
logging.error(f"Attempt {attempt + 1} failed: {e}")
if attempt == retries - 1: # Last attempt
raise HTTPException(status_code=500, detail=f"Failed to generate video after multiple attempts: {str(e)}")
continue # Retry on transient errors
@asynccontextmanager
@app.on_event("shutdown")
def shutdown_event():
""" Perform any cleanup activities on shutdown. """
logging.info("Shutting down the application gracefully.")
# Additional endpoints can be added as needed, such as image-to-image or inpainting.
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)