File size: 34,477 Bytes
8a49fba 572d0e8 8a49fba c9b8f71 70ed3e8 c9b8f71 34e773d 9cb1549 8a49fba 1251cec 8a49fba 1251cec 8a49fba 1251cec 8a49fba bf08430 8a49fba 1251cec 8a49fba 572d0e8 8a49fba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
import os
import torch
import boto3
import random
import string
import numpy as np
import logging
import datetime
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException, Request, Response
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, constr, conint
from diffusers import FluxPipeline
from diffusers.pipelines import FluxImg2ImgPipeline
from diffusers.pipelines import FluxInpaintPipeline
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.pipelines import FluxControlNetPipeline
from diffusers.pipelines import FluxControlNetInpaintPipeline
from diffusers.models import FluxControlNetModel
from diffusers.utils import load_image
from PIL import Image
from collections import defaultdict
import time
# Setup logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("error.txt"),
logging.StreamHandler()
])
app = FastAPI()
# Allow CORS for specific origins if needed
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Update with specific domains as necessary
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
MAX_SEED = np.iinfo(np.int32).max
# AWS S3 Configuration
AWS_ACCESS_KEY_ID = "your-access-key-id"
AWS_SECRET_ACCESS_KEY = "your-secret-access-key"
AWS_REGION = "your-region"
S3_BUCKET_NAME = "your-bucket-name"
# Initialize S3 client
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
# Asynchronously log requests
async def log_requests(user_key: str, prompt: str):
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_entry = f"{timestamp}, {user_key}, {prompt}\n"
async with aiofiles.open("key_requests.txt", "a") as log_file:
await log_file.write(log_entry)
# Asynchronously upload image to S3
async def upload_image_to_s3(image_path: str, s3_path: str):
try:
s3_client.upload_file(image_path, S3_BUCKET_NAME, s3_path)
return f"https://{S3_BUCKET_NAME}.s3.{AWS_REGION}.amazonaws.com/{s3_path}"
except Exception as e:
logging.error(f"Error uploading image to S3: {e}")
raise HTTPException(status_code=500, detail=f"Image upload failed: {str(e)}")
# Generate a random sequence of 12 numbers and 11 words
def generate_random_sequence():
random_numbers = ''.join(random.choices(string.digits, k=12)) # 12 random digits
random_words = ''.join(random.choices(string.ascii_lowercase, k=11)) # 11 random letters
return f"{random_numbers}_{random_words}"
# Load the default pipeline once globally for efficiency
flux_pipe = FluxPipeline.from_pretrained("pranavajay/flow", torch_dtype=torch.bfloat16)
flux_pipe.enable_model_cpu_offload()
logging.info("FluxPipeline loaded successfully.")
img_pipe = FluxImg2ImgPipeline.from_pretrained("pranavajay/flow", torch_dtype=torch.bfloat16)
img_pipe.enable_model_cpu_offload()
logging.info("FluxImg2ImgPipeline loaded successfully.")
inpainting_pipe = FluxImg2ImgPipeline.from_pretrained("pranavajay/flow", torch_dtype=torch.bfloat16)
inpainting_pipe.enable_model_cpu_offload()
logging.info("FluxInpaintPipeline loaded successfully.")
video = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V", torch_dtype=torch.bfloat16
)
video.enable_sequential_cpu_offload()
video.vae.enable_tiling()
video.vae.enable_slicing()
logging.info("CogVideoXImageToVideoPipeline loaded successfully.")
flux_controlnet_pipe = None
# Rate limiting variables
request_timestamps = defaultdict(list) # Store timestamps of requests per user key
RATE_LIMIT = 30 # Maximum requests allowed
TIME_WINDOW = 5 # Time window in seconds
# Available LoRA styles and ControlNet adapters
style_lora_mapping = {
"Uncensored": {"path": "enhanceaiteam/Flux-uncensored", "triggered_word": "nsfw"},
"Logo": {"path": "Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design", "triggered_word": "logo"},
"Yarn": {"path": "Shakker-Labs/FLUX.1-dev-LoRA-MiaoKa-Yarn-World", "triggered_word": "mkym this is made of wool"},
"Anime": {"path": "prithivMLmods/Canopus-LoRA-Flux-Anime", "triggered_word": "anime"},
"Comic": {"path": "wkplhc/comic", "triggered_word": "comic"}
}
adapter_controlnet_mapping = {
"Canny": "InstantX/FLUX.1-dev-controlnet-canny",
"Depth": "Shakker-Labs/FLUX.1-dev-ControlNet-Depth",
"Pose": "Shakker-Labs/FLUX.1-dev-ControlNet-Pose",
"Upscale": "jasperai/Flux.1-dev-Controlnet-Upscaler"
}
# Request model for query parameters
class GenerateImageRequest(BaseModel):
prompt: constr(min_length=1) # Ensures prompt is not empty
guidance_scale: float = 7.5
seed: conint(ge=0, le=MAX_SEED) = 42
randomize_seed: bool = False
height: conint(gt=0) = 768
width: conint(gt=0) = 1360
control_image_url: str = "https://enhanceai.s3.amazonaws.com/792e2322-77fe-4070-aac4-7fa8d9e29c11_1.png"
controlnet_conditioning_scale: float = 0.6
num_inference_steps: conint(gt=0) = 50
num_images_per_prompt: conint(gt=0, le=5) = 1 # Limit to max 5 images per request
style: str = None # Optional LoRA style
adapter: str = None # Optional ControlNet adapter
user_key: str # API user key
# Apply LoRA style to the prompt
async def apply_lora_style(pipe, style, prompt):
if style in style_lora_mapping:
lora_path = style_lora_mapping[style]["path"]
triggered_word = style_lora_mapping[style]["triggered_word"]
pipe.load_lora_weights(lora_path)
return f"{triggered_word} {prompt}"
return prompt
# Set ControlNet adapter for the pipeline
async def set_controlnet_adapter(adapter: str, is_inpainting: bool = False):
global flux_controlnet_pipe
if adapter not in adapter_controlnet_mapping:
raise ValueError(f"Invalid ControlNet adapter: {adapter}")
controlnet_model_path = adapter_controlnet_mapping[adapter]
controlnet = FluxControlNetModel.from_pretrained(controlnet_model_path, torch_dtype=torch.bfloat16)
pipeline_cls = FluxControlNetPipeline if not is_inpainting else FluxControlNetInpaintPipeline
flux_controlnet_pipe = pipeline_cls.from_pretrained(
"pranavajay/flow", controlnet=controlnet, torch_dtype=torch.bfloat16
)
flux_controlnet_pipe.to("cuda")
logging.info(f"ControlNet adapter '{adapter}' loaded successfully.")
# Rate limit user requests
async def rate_limit(user_key: str):
current_time = time.time()
request_timestamps[user_key] = [t for t in request_timestamps[user_key] if current_time - t < TIME_WINDOW]
if len(request_timestamps[user_key]) >= RATE_LIMIT:
logging.info(f"Rate limit exceeded for user_key: {user_key}")
return False
request_timestamps[user_key].append(current_time)
return True
@app.post("/text_to_image/")
async def generate_image(req: GenerateImageRequest):
seed = req.seed or random.randint(0, MAX_SEED)
# Rate limit check
if not await rate_limit(req.user_key):
await log_requests(req.user_key, req.prompt)
retries = 3 # Number of retries for transient errors
for attempt in range(retries):
try:
# Check if prompt is None or empty
if not req.prompt or req.prompt.strip() == "":
raise ValueError("Prompt cannot be empty.")
original_prompt = req.prompt # Save the original prompt
# Set ControlNet if adapter is provided
if req.adapter:
try:
await set_controlnet_adapter(req.adapter)
except Exception as e:
logging.error(f"Error setting ControlNet adapter: {e}")
raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}")
await apply_lora_style(flux_controlnet_pipe, req.style, req.prompt)
# Load control image asynchronously
try:
loop = asyncio.get_running_loop()
control_image = await loop.run_in_executor(None, load_image, req.control_image_url)
except Exception as e:
logging.error(f"Error loading control image from URL: {e}")
raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.")
# Image generation with ControlNet
try:
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
images = await loop.run_in_executor(None, flux_controlnet_pipe, {
"prompt": req.prompt,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"control_image": control_image,
"generator": generator,
"controlnet_conditioning_scale": req.controlnet_conditioning_scale
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images with ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation with ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
else:
# Image generation without ControlNet
try:
await apply_lora_style(flux_pipe, req.style, req.prompt)
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
images = await loop.run_in_executor(None, flux_pipe, {
"prompt": req.prompt,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"generator": generator
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images without ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation without ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
# Saving images and uploading to S3 asynchronously
image_urls = []
for img in images:
image_path = f"generated_images/{generate_random_sequence()}.png"
await loop.run_in_executor(None, img.save, image_path)
image_url = await upload_image_to_s3(image_path, image_path)
image_urls.append(image_url)
os.remove(image_path) # Clean up local files after upload
return {
"status": "success",
"output": image_urls,
"prompt": original_prompt,
"height": req.height,
"width": req.width,
"scale": req.guidance_scale,
"steps": req.num_inference_steps,
"style": req.style,
"adapter": req.adapter
}
except Exception as e:
logging.error(f"Attempt {attempt + 1} failed: {e}")
if attempt == retries - 1: # Last attempt
raise HTTPException(status_code=500, detail=f"Failed to generate image after multiple attempts: {str(e)}")
continue # Retry on transient errors
class GenerateImageToImageRequest(BaseModel):
prompt: str = None # Prompt can be None
image: str = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
strength: float = 0.7
guidance_scale: float = 7.5
seed: conint(ge=0, le=MAX_SEED) = 42
randomize_seed: bool = False
height: conint(gt=0) = 768
width: conint(gt=0) = 1360
control_image_url: str = None # Optional ControlNet image
controlnet_conditioning_scale: float = 0.6
num_inference_steps: conint(gt=0) = 50
num_images_per_prompt: conint(gt=0, le=5) = 1
style: str = None # Optional LoRA style
adapter: str = None # Optional ControlNet adapter
user_key: str # API user key
@app.post("/image_to_image/")
async def generate_image_to_image(req: GenerateImageToImageRequest):
seed = req.seed
original_prompt = req.prompt
modified_prompt = original_prompt
# Check if user is exceeding rate limit
if not await rate_limit(req.user_key):
await log_requests(req.user_key, req.prompt if req.prompt else "No prompt")
raise HTTPException(status_code=429, detail="Rate limit exceeded")
retries = 3 # Number of retries for transient errors
loop = asyncio.get_running_loop()
for attempt in range(retries):
try:
# Check if prompt is None or empty
if not req.prompt or req.prompt.strip() == "":
raise ValueError("Prompt cannot be empty.")
original_prompt = req.prompt # Save the original prompt
# Set ControlNet if adapter is provided
if req.adapter:
try:
await set_controlnet_adapter(req.adapter)
except Exception as e:
logging.error(f"Error setting ControlNet adapter: {e}")
raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}")
await apply_lora_style(flux_controlnet_pipe, req.style, req.prompt)
# Load control image asynchronously
try:
control_image = await loop.run_in_executor(None, load_image, req.control_image_url)
except Exception as e:
logging.error(f"Error loading control image from URL: {e}")
raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.")
# Image generation with ControlNet
try:
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
images = await loop.run_in_executor(None, flux_controlnet_pipe, {
"prompt": modified_prompt,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"control_image": control_image,
"generator": generator,
"controlnet_conditioning_scale": req.controlnet_conditioning_scale
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images with ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation with ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
else:
# Image generation without ControlNet
try:
await apply_lora_style(img_pipe, req.style, req.prompt)
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
source = await loop.run_in_executor(None, load_image, req.image)
images = await loop.run_in_executor(None, img_pipe, {
"prompt": modified_prompt,
"image": source,
"strength": req.strength,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"generator": generator
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images without ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation without ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
# Saving images and uploading to S3 asynchronously
image_urls = []
for img in images:
image_path = f"generated_images/{generate_random_sequence()}.png"
await loop.run_in_executor(None, img.save, image_path)
image_url = await upload_image_to_s3(image_path, image_path)
image_urls.append(image_url)
os.remove(image_path) # Clean up local files after upload
return {
"status": "success",
"output": image_urls,
"prompt": original_prompt,
"height": req.height,
"width": req.width,
"image": req.image,
"strength": req.strength,
"scale": req.guidance_scale,
"steps": req.num_inference_steps,
"style": req.style,
"adapter": req.adapter
}
except Exception as e:
logging.error(f"Attempt {attempt + 1} failed: {e}")
if attempt == retries - 1: # Last attempt
raise HTTPException(status_code=500, detail=f"Failed to generate image after multiple attempts: {str(e)}")
continue # Retry on transient errors
class GenerateInpaintingRequest(BaseModel):
prompt: str = None # Prompt can be None
image: str = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_image: str = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
guidance_scale: float = 7.5
seed: conint(ge=0, le=MAX_SEED) = 42
randomize_seed: bool = False
height: conint(gt=0) = 768
width: conint(gt=0) = 1360
control_image_url: str = None # Optional ControlNet image
controlnet_conditioning_scale: float = 0.6
num_inference_steps: conint(gt=0) = 50
num_images_per_prompt: conint(gt=0, le=5) = 1
style: str = None # Optional LoRA style
adapter: str = None # Optional ControlNet adapter
user_key: str # API user key
@app.post("/inpainting/")
async def generate_inpainting(req: GenerateInpaintingRequest):
seed = req.seed
original_prompt = req.prompt
modified_prompt = original_prompt
# Check if user is exceeding rate limit
if not await rate_limit(req.user_key):
await log_requests(req.user_key, req.prompt if req.prompt else "No prompt")
raise HTTPException(status_code=429, detail="Rate limit exceeded")
retries = 3 # Number of retries for transient errors
loop = asyncio.get_running_loop()
for attempt in range(retries):
try:
# Check if prompt is None or empty
if not req.prompt or req.prompt.strip() == "":
raise ValueError("Prompt cannot be empty.")
# Set ControlNet if adapter is provided
if req.adapter:
try:
await set_controlnet_adapter(req.adapter, is_inpainting=True)
except Exception as e:
logging.error(f"Error setting ControlNet adapter: {e}")
raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}")
await apply_lora_style(flux_inpainting_controlnet_pipe, req.style, req.prompt)
# Load control image asynchronously
try:
control_image = await loop.run_in_executor(None, load_image, req.control_image_url)
except Exception as e:
logging.error(f"Error loading control image from URL: {e}")
raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.")
# Image generation with ControlNet
try:
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
source = await loop.run_in_executor(None, load_image, req.image)
mask = await loop.run_in_executor(None, load_image, req.mask_image)
images = await loop.run_in_executor(None, flux_controlnet_pipe, {
"prompt": modified_prompt,
"image": source,
"mask_image": mask,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"control_image": control_image,
"generator": generator,
"controlnet_conditioning_scale": req.controlnet_conditioning_scale
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images with ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation with ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
else:
# Image generation without ControlNet
try:
await apply_lora_style(inpainting_pipe, req.style, req.prompt)
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
source = await loop.run_in_executor(None, load_image, req.image)
mask = await loop.run_in_executor(None, load_image, req.mask_image)
images = await loop.run_in_executor(None, inpainting_pipe, {
"prompt": modified_prompt,
"image": source,
"mask_image": mask,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"generator": generator
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images without ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation without ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
# Saving generated images
image_urls = []
for i, img in enumerate(images):
image_path = f"generated_images/inpainting_{generate_random_sequence()}.png"
img.save(image_path)
# Optionally, upload the image to S3
s3_path = f"inpainting/{original_prompt.replace(' ', '_')}_{generate_random_sequence()}_{i}.png"
s3_url = await upload_file_to_s3(image_path, s3_path)
image_urls.append(s3_url)
# Clean up temporary files
os.remove(image_path)
return {
"status": "success",
"output": image_urls,
"prompt": original_prompt,
"height": req.height,
"width": req.width,
"scale": req.guidance_scale,
"style": req.style,
"adapter": req.adapter
}
except Exception as e:
logging.error(f"Attempt {attempt + 1} failed: {e}")
if attempt == retries - 1: # Last attempt
raise HTTPException(status_code=500, detail=f"Failed to generate inpainting after multiple attempts: {str(e)}")
continue # Retry on transient errors
class GenerateVideoRequest(BaseModel):
prompt: constr(min_length=1) # Ensures prompt is not empty
guidance_scale: float = 7.5
seed: conint(ge=0, le=MAX_SEED) = 42
randomize_seed: bool = False
height: conint(gt=0) = 768
width: conint(gt=0) = 1360
control_image_url: str = "https://enhanceai.s3.amazonaws.com/792e2322-77fe-4070-aac4-7fa8d9e29c11_1.png"
controlnet_conditioning_scale: float = 0.6
num_inference_steps: conint(gt=0) = 50
num_images_per_prompt: conint(gt=0, le=5) = 1 # Limit to max 5 images per request
style: str = None # Optional LoRA style
adapter: str = None # Optional ControlNet adapter
user_key: str # API user key
@app.post("/text_to_video/")
async def generate_video(req: GenerateImageRequest):
seed = req.seed
if not rate_limit(req.user_key):
log_requests(req.user_key, req.prompt) # Log the request when rate limit is exceeded
retries = 3 # Number of retries for transient errors
s3_urls = [] # List to store S3 URLs of generated videos
loop = asyncio.get_running_loop() # Get the current event loop
for attempt in range(retries):
try:
# Check if prompt is None or empty
if not req.prompt or req.prompt.strip() == "":
raise ValueError("Prompt cannot be empty.")
original_prompt = req.prompt # Save the original prompt
# Set ControlNet if adapter is provided
if req.adapter:
try:
await set_controlnet_adapter(req.adapter)
except Exception as e:
logging.error(f"Error setting ControlNet adapter: {e}")
raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}")
# Load control image asynchronously
try:
control_image = await loop.run_in_executor(None, load_image, req.control_image_url)
except Exception as e:
logging.error(f"Error loading control image from URL: {e}")
raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.")
# Image generation with ControlNet
try:
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
images = await loop.run_in_executor(None, flux_controlnet_pipe, {
"prompt": original_prompt,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"control_image": control_image,
"generator": generator,
"controlnet_conditioning_scale": req.controlnet_conditioning_scale
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images with ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation with ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
else:
# Image generation without ControlNet
try:
await apply_lora_style(flux_pipe, req.style, req.prompt)
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
images = await loop.run_in_executor(None, flux_pipe, {
"prompt": original_prompt,
"guidance_scale": req.guidance_scale,
"height": req.height,
"width": req.width,
"num_inference_steps": req.num_inference_steps,
"num_images_per_prompt": req.num_images_per_prompt,
"generator": generator
})
except torch.cuda.OutOfMemoryError:
logging.error("GPU out of memory error while generating images without ControlNet.")
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
except Exception as e:
logging.error(f"Error during image generation without ControlNet: {e}")
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
# Saving images and uploading to S3
for i, img in enumerate(images):
image_path = f"generated_images/{generate_random_sequence()}.png"
# Save image asynchronously
await loop.run_in_executor(None, img.save, image_path)
# Generate video from the image
if req.randomize_seed:
seed = random.randint(0, MAX_SEED)
vido = await loop.run_in_executor(None, video, {
"prompt": original_prompt,
"image": image_path,
"num_videos_per_prompt": 1,
"num_inference_steps": req.num_inference_steps,
"num_frames": req.num_frames,
"guidance_scale": req.guidance_scale,
"generator": torch.Generator(device="cuda").manual_seed(seed)
})
# Export the video to a file asynchronously
video_path = f"generated_video_{i}_{generate_random_sequence()}.mp4"
await loop.run_in_executor(None, export_to_video, vido, video_path, 8)
# Upload the video to S3 asynchronously
s3_path = f"videos/{original_prompt.replace(' ', '_')}_{generate_random_sequence()}_{i}.mp4"
s3_url = await loop.run_in_executor(None, upload_file_to_s3, video_path, s3_path)
s3_urls.append(s3_url)
# Clean up temporary files
os.remove(image_path)
os.remove(video_path)
return {
"status": "success",
"output": s3_urls,
"prompt": original_prompt,
"height": req.height,
"width": req.width,
"num_frames": req.num_frames,
"scale": req.guidance_scale,
"style": req.style,
"adapter": req.adapter
}
except Exception as e:
logging.error(f"Attempt {attempt + 1} failed: {e}")
if attempt == retries - 1: # Last attempt
raise HTTPException(status_code=500, detail=f"Failed to generate video after multiple attempts: {str(e)}")
continue # Retry on transient errors
@asynccontextmanager
@app.on_event("shutdown")
def shutdown_event():
""" Perform any cleanup activities on shutdown. """
logging.info("Shutting down the application gracefully.")
# Additional endpoints can be added as needed, such as image-to-image or inpainting.
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|