IKI-Category-multilabel_bge
This model is a fine-tuned version of BAAI/bge-base-en-v1.5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4541
- Precision-micro: 0.75
- Precision-samples: 0.7708
- Precision-weighted: 0.7517
- Recall-micro: 0.7880
- Recall-samples: 0.7858
- Recall-weighted: 0.7880
- F1-micro: 0.7685
- F1-samples: 0.7537
- F1-weighted: 0.7615
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8999 | 0.99 | 94 | 0.8742 | 0.3889 | 0.0272 | 0.1308 | 0.0169 | 0.0188 | 0.0169 | 0.0323 | 0.0202 | 0.0280 |
0.7377 | 2.0 | 189 | 0.6770 | 0.4727 | 0.4996 | 0.5333 | 0.5639 | 0.5782 | 0.5639 | 0.5143 | 0.4883 | 0.4998 |
0.5582 | 2.99 | 283 | 0.5552 | 0.5111 | 0.5585 | 0.5685 | 0.7229 | 0.7357 | 0.7229 | 0.5988 | 0.5959 | 0.6175 |
0.3943 | 4.0 | 378 | 0.4713 | 0.5616 | 0.6397 | 0.5869 | 0.7904 | 0.8071 | 0.7904 | 0.6567 | 0.6761 | 0.6611 |
0.2883 | 4.99 | 472 | 0.4555 | 0.6384 | 0.6969 | 0.6444 | 0.7446 | 0.7641 | 0.7446 | 0.6874 | 0.6901 | 0.6854 |
0.2112 | 6.0 | 567 | 0.4459 | 0.6443 | 0.6968 | 0.6637 | 0.7855 | 0.7942 | 0.7855 | 0.7079 | 0.7123 | 0.7068 |
0.1608 | 6.99 | 661 | 0.4212 | 0.6508 | 0.7071 | 0.6586 | 0.7904 | 0.7931 | 0.7904 | 0.7138 | 0.7161 | 0.7116 |
0.1247 | 8.0 | 756 | 0.4177 | 0.6633 | 0.7145 | 0.6650 | 0.7976 | 0.8006 | 0.7976 | 0.7243 | 0.7193 | 0.7195 |
0.1031 | 8.99 | 850 | 0.4435 | 0.7277 | 0.7523 | 0.7306 | 0.7855 | 0.7875 | 0.7855 | 0.7555 | 0.7425 | 0.7487 |
0.0851 | 10.0 | 945 | 0.4522 | 0.7380 | 0.7623 | 0.7465 | 0.7807 | 0.7795 | 0.7807 | 0.7588 | 0.7432 | 0.7516 |
0.074 | 10.99 | 1039 | 0.4548 | 0.7359 | 0.7663 | 0.7368 | 0.7855 | 0.7910 | 0.7855 | 0.7599 | 0.7490 | 0.7521 |
0.0648 | 12.0 | 1134 | 0.4430 | 0.7425 | 0.7676 | 0.7437 | 0.7783 | 0.7781 | 0.7783 | 0.76 | 0.7461 | 0.7540 |
0.0605 | 12.99 | 1228 | 0.4478 | 0.7366 | 0.7651 | 0.7379 | 0.7952 | 0.7948 | 0.7952 | 0.7648 | 0.7545 | 0.7579 |
0.0566 | 14.0 | 1323 | 0.4574 | 0.7506 | 0.7708 | 0.7519 | 0.7904 | 0.7893 | 0.7904 | 0.7700 | 0.7546 | 0.7625 |
0.0546 | 14.92 | 1410 | 0.4541 | 0.75 | 0.7708 | 0.7517 | 0.7880 | 0.7858 | 0.7880 | 0.7685 | 0.7537 | 0.7615 |
Category | Precision | Recall | F1 | Suport |
---|---|---|---|---|
Active mobility | 0.70 | 0.894 | 0.7908 | 19.0 |
Alternative fuels | 0.804 | 0.865 | 0.833 | 52.0 |
Aviation improvements | 0.700 | 1.00 | 0.824 | 7.0 |
Comprehensive transport planning | 0.750 | 0.571 | 0.649 | 21.0 |
Digital solutions | 0.708 | 0.772 | 0.739 | 22.0 |
Economic instruments | 0.742 | 0.821 | 0.780 | 28.0 |
Education and behavioral change | 0.727 | 0.727 | 0.727 | 11.0 |
Electric mobility | 0.766 | 0.922 | 0.837 | 64.0 |
Freight efficiency improvements | 0.768 | 0.650 | 0.703 | 20.0 |
Improve infrastructure | 0.638 | 0.857 | 0.732 | 35.0 |
Land use | 1.00 | 0.625 | 0.769 | 8.0 |
Other Transport Category | 0.600 | 0.27 | 0.375 | 11.0 |
Public transport improvement | 0.777 | 0.833 | 0.804 | 42.0 |
Shipping improvements | 0.846 | 0.846 | 0.846 | 13.0 |
Transport demand management | 0.666 | 0.40 | 0.500 | 15.0 |
Vehicle improvements | 0.783 | 0.766 | 0.774 | 47.0 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Carbon Emitted: 0.0473 kg of CO2
- Hours Used: 0.996 hours
Training Hardware
- On Cloud: yes
- GPU Model: 1 x Tesla T4
- CPU Model: Intel(R) Xeon(R) CPU @ 2.30GHz
- RAM Size: 12.67 GB
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ppsingh/IKI-Category-multilabel_bge
Base model
BAAI/bge-base-en-v1.5