BartBali2Indo / README.md
pijarcandra22's picture
Training in progress epoch 56
f2683d6
|
raw
history blame
3.64 kB
metadata
license: apache-2.0
base_model: facebook/bart-base
tags:
  - generated_from_keras_callback
model-index:
  - name: pijarcandra22/BartBali2Indo
    results: []

pijarcandra22/BartBali2Indo

This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0023
  • Validation Loss: 2.8624
  • Epoch: 56

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
0.0020 2.8075 0
0.0024 2.8006 1
0.0027 2.8418 2
0.0021 2.8171 3
0.0023 2.7964 4
0.0027 2.8319 5
0.0018 2.8167 6
0.0022 2.8269 7
0.0021 2.8194 8
0.0020 2.8213 9
0.0018 2.8459 10
0.0022 2.8367 11
0.0018 2.7985 12
0.0019 2.8249 13
0.0026 2.8372 14
0.0024 2.8388 15
0.0023 2.8350 16
0.0023 2.8429 17
0.0024 2.7952 18
0.0028 2.7758 19
0.0025 2.8287 20
0.0025 2.8150 21
0.0030 2.8394 22
0.0019 2.7969 23
0.0018 2.8244 24
0.0026 2.8472 25
0.0017 2.8750 26
0.0021 2.8316 27
0.0018 2.8080 28
0.0018 2.8333 29
0.0031 2.8716 30
0.0024 2.8551 31
0.0027 2.8611 32
0.0031 2.8276 33
0.0030 2.8264 34
0.0025 2.8764 35
0.0023 2.8492 36
0.0037 2.8445 37
0.0024 2.8607 38
0.0024 2.8460 39
0.0021 2.8844 40
0.0031 2.8310 41
0.0031 2.8714 42
0.0034 2.8768 43
0.0028 2.8641 44
0.0023 2.8253 45
0.0025 2.8205 46
0.0024 2.8318 47
0.0019 2.8558 48
0.0017 2.8302 49
0.0017 2.8587 50
0.0021 2.8501 51
0.0019 2.8433 52
0.0017 2.8747 53
0.0021 2.8454 54
0.0018 2.8685 55
0.0023 2.8624 56

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.14.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0