See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-1B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b240b02ee7fdcbd3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b240b02ee7fdcbd3_train_data.json
type:
field_input: sentence2
field_instruction: sentence1
field_output: label
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: phungkhaccuong/06a07daa-ae82-6f14-6c41-f5fbf5ded026
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 1
micro_batch_size: 2
mlflow_experiment_name: /tmp/b240b02ee7fdcbd3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2337c966-71b8-41f0-a646-c9b5f46fea72
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2337c966-71b8-41f0-a646-c9b5f46fea72
warmup_steps: 1
weight_decay: 0.0
xformers_attention: null
06a07daa-ae82-6f14-6c41-f5fbf5ded026
This model is a fine-tuned version of unsloth/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5438
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 9.4403 |
8.4145 | 0.0008 | 10 | 7.3249 |
3.5234 | 0.0016 | 20 | 2.3125 |
0.6164 | 0.0024 | 30 | 0.5966 |
0.5115 | 0.0031 | 40 | 0.5395 |
0.5211 | 0.0039 | 50 | 0.5438 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 11