phunc20 commited on
Commit
f10ab29
·
1 Parent(s): d4bed19

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -8
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.6666666666666666
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.6526
36
- - Accuracy: 0.6667
37
 
38
  ## Model description
39
 
@@ -56,19 +56,67 @@ The following hyperparameters were used during training:
56
  - train_batch_size: 64
57
  - eval_batch_size: 64
58
  - seed: 42
59
- - gradient_accumulation_steps: 4
60
- - total_train_batch_size: 256
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
64
- - num_epochs: 3
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | No log | 0.67 | 1 | 0.7241 | 0.3333 |
71
- | No log | 2.0 | 3 | 0.6526 | 0.6667 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
 
74
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 1.0
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.0000
36
+ - Accuracy: 1.0
37
 
38
  ## Model description
39
 
 
56
  - train_batch_size: 64
57
  - eval_batch_size: 64
58
  - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 128
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 50
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | No log | 1.0 | 3 | 0.6245 | 0.7778 |
71
+ | No log | 2.0 | 6 | 0.5321 | 0.7778 |
72
+ | No log | 3.0 | 9 | 0.5123 | 0.7778 |
73
+ | 0.6482 | 4.0 | 12 | 0.4956 | 0.7778 |
74
+ | 0.6482 | 5.0 | 15 | 0.4585 | 0.7778 |
75
+ | 0.6482 | 6.0 | 18 | 0.3743 | 0.8611 |
76
+ | 0.5574 | 7.0 | 21 | 0.2842 | 0.9167 |
77
+ | 0.5574 | 8.0 | 24 | 0.2125 | 0.9167 |
78
+ | 0.5574 | 9.0 | 27 | 0.2683 | 0.9167 |
79
+ | 0.4882 | 10.0 | 30 | 0.1316 | 0.9444 |
80
+ | 0.4882 | 11.0 | 33 | 0.1366 | 0.9444 |
81
+ | 0.4882 | 12.0 | 36 | 0.0745 | 0.9722 |
82
+ | 0.4882 | 13.0 | 39 | 0.1065 | 0.9444 |
83
+ | 0.0907 | 14.0 | 42 | 0.0477 | 0.9722 |
84
+ | 0.0907 | 15.0 | 45 | 0.0460 | 0.9444 |
85
+ | 0.0907 | 16.0 | 48 | 0.0438 | 0.9722 |
86
+ | 0.0481 | 17.0 | 51 | 0.0203 | 1.0 |
87
+ | 0.0481 | 18.0 | 54 | 0.0093 | 1.0 |
88
+ | 0.0481 | 19.0 | 57 | 0.0082 | 1.0 |
89
+ | 0.013 | 20.0 | 60 | 0.0017 | 1.0 |
90
+ | 0.013 | 21.0 | 63 | 0.0008 | 1.0 |
91
+ | 0.013 | 22.0 | 66 | 0.0002 | 1.0 |
92
+ | 0.013 | 23.0 | 69 | 0.0001 | 1.0 |
93
+ | 0.0101 | 24.0 | 72 | 0.0938 | 0.9722 |
94
+ | 0.0101 | 25.0 | 75 | 0.1019 | 0.9722 |
95
+ | 0.0101 | 26.0 | 78 | 0.0005 | 1.0 |
96
+ | 0.0085 | 27.0 | 81 | 0.0000 | 1.0 |
97
+ | 0.0085 | 28.0 | 84 | 0.0000 | 1.0 |
98
+ | 0.0085 | 29.0 | 87 | 0.0001 | 1.0 |
99
+ | 0.0196 | 30.0 | 90 | 0.0001 | 1.0 |
100
+ | 0.0196 | 31.0 | 93 | 0.0001 | 1.0 |
101
+ | 0.0196 | 32.0 | 96 | 0.0000 | 1.0 |
102
+ | 0.0196 | 33.0 | 99 | 0.0000 | 1.0 |
103
+ | 0.0027 | 34.0 | 102 | 0.0000 | 1.0 |
104
+ | 0.0027 | 35.0 | 105 | 0.0000 | 1.0 |
105
+ | 0.0027 | 36.0 | 108 | 0.0000 | 1.0 |
106
+ | 0.0016 | 37.0 | 111 | 0.0000 | 1.0 |
107
+ | 0.0016 | 38.0 | 114 | 0.0000 | 1.0 |
108
+ | 0.0016 | 39.0 | 117 | 0.0000 | 1.0 |
109
+ | 0.0021 | 40.0 | 120 | 0.0000 | 1.0 |
110
+ | 0.0021 | 41.0 | 123 | 0.0000 | 1.0 |
111
+ | 0.0021 | 42.0 | 126 | 0.0000 | 1.0 |
112
+ | 0.0021 | 43.0 | 129 | 0.0000 | 1.0 |
113
+ | 0.0024 | 44.0 | 132 | 0.0000 | 1.0 |
114
+ | 0.0024 | 45.0 | 135 | 0.0000 | 1.0 |
115
+ | 0.0024 | 46.0 | 138 | 0.0000 | 1.0 |
116
+ | 0.0009 | 47.0 | 141 | 0.0000 | 1.0 |
117
+ | 0.0009 | 48.0 | 144 | 0.0000 | 1.0 |
118
+ | 0.0009 | 49.0 | 147 | 0.0000 | 1.0 |
119
+ | 0.0006 | 50.0 | 150 | 0.0000 | 1.0 |
120
 
121
 
122
  ### Framework versions