swin-tiny-patch4-window7-224-finetuned-wuhan

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7953
  • Accuracy: 0.4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 3 0.7953 0.4
No log 2.0 6 0.9477 0.4
No log 3.0 9 1.0106 0.4
0.5883 4.0 12 1.4170 0.4
0.5883 5.0 15 1.7436 0.4
0.5883 6.0 18 2.5380 0.4
0.241 7.0 21 3.8803 0.4
0.241 8.0 24 2.4040 0.2222
0.241 9.0 27 3.9968 0.4
0.125 10.0 30 3.2731 0.4
0.125 11.0 33 3.2202 0.2222
0.125 12.0 36 4.7008 0.4
0.125 13.0 39 4.5588 0.3556
0.0766 14.0 42 4.5434 0.2444
0.0766 15.0 45 4.9792 0.2667
0.0766 16.0 48 5.4095 0.2667
0.0239 17.0 51 5.8507 0.2222
0.0239 18.0 54 6.1023 0.2222
0.0239 19.0 57 6.1666 0.2222
0.0129 20.0 60 6.1948 0.2222

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.1
  • Tokenizers 0.13.3
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for phunc20/swin-tiny-patch4-window7-224-finetuned-wuhan

Finetuned
(492)
this model

Evaluation results