phunc20 commited on
Commit
c487384
·
1 Parent(s): 636fecc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -9
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.7222222222222222
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.5874
36
- - Accuracy: 0.7222
37
 
38
  ## Model description
39
 
@@ -53,11 +53,11 @@ More information needed
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
- - train_batch_size: 32
57
- - eval_batch_size: 32
58
  - seed: 42
59
  - gradient_accumulation_steps: 4
60
- - total_train_batch_size: 128
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
@@ -67,9 +67,8 @@ The following hyperparameters were used during training:
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | No log | 0.73 | 2 | 0.5874 | 0.7222 |
71
- | No log | 1.82 | 5 | 0.6381 | 0.7222 |
72
- | No log | 2.18 | 6 | 0.6257 | 0.7222 |
73
 
74
 
75
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.6666666666666666
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.6526
36
+ - Accuracy: 0.6667
37
 
38
  ## Model description
39
 
 
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
+ - train_batch_size: 64
57
+ - eval_batch_size: 64
58
  - seed: 42
59
  - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 256
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
 
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | No log | 0.67 | 1 | 0.7241 | 0.3333 |
71
+ | No log | 2.0 | 3 | 0.6526 | 0.6667 |
 
72
 
73
 
74
  ### Framework versions