childes-segmentation-18M-gpt2_lm-model

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5598
  • Model Preparation Time: 0.0013
  • Perplexity: 4.7580
  • Bpc: 2.2503
  • Spike Seg Type Fscore Entropy: 0.5424
  • Spike Seg Boundary Fscore Entropy: 0.7652
  • Absolute Seg Type Fscore Entropy: 0.4188
  • Absolute Seg Boundary Fscore Entropy: 0.6411
  • Spike Seg Type Fscore Increase in entropy: 0.5339
  • Spike Seg Boundary Fscore Increase in entropy: 0.7796
  • Absolute Seg Type Fscore Increase in entropy: 0.5744
  • Absolute Seg Boundary Fscore Increase in entropy: 0.7708
  • Spike Seg Type Fscore Loss: 0.4461
  • Spike Seg Boundary Fscore Loss: 0.6948
  • Absolute Seg Type Fscore Loss: 0.3397
  • Absolute Seg Boundary Fscore Loss: 0.6138
  • Spike Seg Type Fscore Increase in loss: 0.5024
  • Spike Seg Boundary Fscore Increase in loss: 0.7430
  • Absolute Seg Type Fscore Increase in loss: 0.5046
  • Absolute Seg Boundary Fscore Increase in loss: 0.7437
  • Spike Seg Type Fscore Rank: 0.4778
  • Spike Seg Boundary Fscore Rank: 0.6585
  • Absolute Seg Type Fscore Rank: 0.3314
  • Absolute Seg Boundary Fscore Rank: 0.5551
  • Spike Seg Type Fscore Increase in rank: 0.4977
  • Spike Seg Boundary Fscore Increase in rank: 0.6963
  • Absolute Seg Type Fscore Increase in rank: 0.4902
  • Absolute Seg Boundary Fscore Increase in rank: 0.7065
  • Spike Seg Type Fscore Boundary prediction: 0.5365
  • Spike Seg Boundary Fscore Boundary prediction: 0.8041
  • Absolute Seg Type Fscore Boundary prediction: 0.3187
  • Absolute Seg Boundary Fscore Boundary prediction: 0.7456
  • Spike Seg Type Fscore Increase in boundary prediction: 0.5171
  • Spike Seg Boundary Fscore Increase in boundary prediction: 0.7895
  • Absolute Seg Type Fscore Increase in boundary prediction: 0.2577
  • Absolute Seg Boundary Fscore Increase in boundary prediction: 0.5526
  • Spike Seg Type Fscore Majority vote cutoff: 0.6165
  • Spike Seg Type Fscore Majority vote spike: 0.4770
  • Absolute Seg Type Fscore Majority vote cutoff: 0.5211
  • Absolute Seg Type Fscore Majority vote spike: 0.6022
  • Spike Seg Boundary Fscore Majority vote cutoff: 0.8101
  • Spike Seg Boundary Fscore Majority vote spike: 0.7717
  • Absolute Seg Boundary Fscore Majority vote cutoff: 0.7609
  • Absolute Seg Boundary Fscore Majority vote spike: 0.8128

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 60000
  • training_steps: 200000

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Perplexity Bpc Spike Seg Type Fscore Entropy Spike Seg Boundary Fscore Entropy Absolute Seg Type Fscore Entropy Absolute Seg Boundary Fscore Entropy Spike Seg Type Fscore Increase in entropy Spike Seg Boundary Fscore Increase in entropy Absolute Seg Type Fscore Increase in entropy Absolute Seg Boundary Fscore Increase in entropy Spike Seg Type Fscore Loss Spike Seg Boundary Fscore Loss Absolute Seg Type Fscore Loss Absolute Seg Boundary Fscore Loss Spike Seg Type Fscore Increase in loss Spike Seg Boundary Fscore Increase in loss Absolute Seg Type Fscore Increase in loss Absolute Seg Boundary Fscore Increase in loss Spike Seg Type Fscore Rank Spike Seg Boundary Fscore Rank Absolute Seg Type Fscore Rank Absolute Seg Boundary Fscore Rank Spike Seg Type Fscore Increase in rank Spike Seg Boundary Fscore Increase in rank Absolute Seg Type Fscore Increase in rank Absolute Seg Boundary Fscore Increase in rank Spike Seg Type Fscore Boundary prediction Spike Seg Boundary Fscore Boundary prediction Absolute Seg Type Fscore Boundary prediction Absolute Seg Boundary Fscore Boundary prediction Spike Seg Type Fscore Increase in boundary prediction Spike Seg Boundary Fscore Increase in boundary prediction Absolute Seg Type Fscore Increase in boundary prediction Absolute Seg Boundary Fscore Increase in boundary prediction Spike Seg Type Fscore Majority vote cutoff Spike Seg Type Fscore Majority vote spike Absolute Seg Type Fscore Majority vote cutoff Absolute Seg Type Fscore Majority vote spike Spike Seg Boundary Fscore Majority vote cutoff Spike Seg Boundary Fscore Majority vote spike Absolute Seg Boundary Fscore Majority vote cutoff Absolute Seg Boundary Fscore Majority vote spike
1.418 4.5290 20000 1.5456 0.0013 4.6908 2.2298 0.5202 0.7537 0.3779 0.6326 0.4886 0.7542 0.5462 0.7705 0.4673 0.7125 0.1852 0.6119 0.5 0.7439 0.5140 0.7503 0.4580 0.6515 0.3252 0.5828 0.4965 0.6950 0.5032 0.6947 0.5137 0.7850 0.3688 0.5036 0.4720 0.7564 0.2699 0.7468 0.6117 0.4695 0.4865 0.5951 0.8190 0.7707 0.7754 0.8128
1.3419 9.0580 40000 1.5062 0.0013 4.5097 2.1730 0.5334 0.7731 0.4017 0.6446 0.4934 0.7641 0.5823 0.7738 0.4661 0.7199 0.3633 0.6170 0.5182 0.7655 0.5230 0.7541 0.4670 0.6554 0.3283 0.5868 0.5086 0.7047 0.5374 0.7079 0.5384 0.8 0.2665 0.7782 0.4865 0.7603 0.2625 0.7599 0.6162 0.4752 0.5467 0.6404 0.8207 0.7733 0.8083 0.8297
1.2911 13.5870 60000 1.4740 0.0013 4.3665 2.1265 0.5431 0.7827 0.4017 0.6226 0.5042 0.7663 0.5776 0.7816 0.4832 0.7214 0.2106 0.6109 0.5060 0.7533 0.5344 0.7594 0.4732 0.6519 0.3198 0.5685 0.4923 0.6900 0.4931 0.6954 0.5379 0.8083 0.3506 0.4930 0.5008 0.7768 0.2621 0.7390 0.6045 0.4492 0.4242 0.6183 0.8186 0.7659 0.7554 0.8234
1.2397 18.1159 80000 1.4710 0.0013 4.3537 2.1222 0.5355 0.7742 0.4044 0.6203 0.5169 0.7687 0.5692 0.7722 0.4724 0.7140 0.3523 0.6225 0.5088 0.7554 0.5271 0.7526 0.4918 0.6667 0.3442 0.5695 0.4949 0.6899 0.5318 0.7059 0.5409 0.8024 0.2643 0.785 0.5060 0.7725 0.2590 0.7676 0.6034 0.4954 0.5495 0.6285 0.8290 0.7749 0.8150 0.8230
1.1906 22.6449 100000 1.4768 0.0013 4.3788 2.1305 0.5342 0.7807 0.4052 0.6284 0.5238 0.7770 0.5770 0.7649 0.4817 0.7269 0.3506 0.6181 0.5196 0.7627 0.5321 0.7583 0.4850 0.6691 0.3317 0.5690 0.5012 0.6983 0.4975 0.7142 0.5420 0.8090 0.2637 0.7085 0.5230 0.7840 0.2821 0.4171 0.6129 0.4882 0.5175 0.6171 0.8043 0.7814 0.7775 0.8289
1.1539 27.1739 120000 1.4986 0.0013 4.4756 2.1621 0.5355 0.7782 0.4135 0.6490 0.5242 0.7819 0.5790 0.7795 0.4570 0.7061 0.3286 0.6123 0.4988 0.7528 0.5187 0.7281 0.4779 0.6674 0.3452 0.5604 0.4854 0.6910 0.5449 0.7106 0.5502 0.8088 0.2884 0.8028 0.5251 0.7881 0.3504 0.7872 0.6119 0.4789 0.5543 0.6131 0.8316 0.7727 0.7959 0.8165
1.1198 31.7029 140000 1.4979 0.0013 4.4723 2.1610 0.5628 0.7849 0.4080 0.5883 0.5267 0.7764 0.5820 0.7557 0.4490 0.6987 0.3389 0.6187 0.4901 0.7447 0.5149 0.7496 0.4686 0.6553 0.3383 0.5647 0.5059 0.6940 0.5319 0.7036 0.5503 0.8056 0.2686 0.7966 0.5293 0.7900 0.2607 0.7840 0.6003 0.4854 0.5448 0.6101 0.8329 0.7729 0.8068 0.8146
1.0878 36.2319 160000 1.5223 0.0013 4.5827 2.1962 0.5553 0.7755 0.4237 0.6483 0.5196 0.7746 0.5848 0.7763 0.4497 0.6927 0.3273 0.6138 0.4858 0.7384 0.5113 0.7470 0.4716 0.6550 0.3289 0.5669 0.5098 0.69 0.5040 0.6965 0.5400 0.8044 0.3216 0.7546 0.5179 0.7898 0.5233 0.7859 0.6214 0.4608 0.5760 0.6141 0.8290 0.7650 0.8015 0.8115
1.0617 40.7609 180000 1.5411 0.0013 4.6699 2.2234 0.5562 0.7730 0.4066 0.6411 0.5280 0.7766 0.5836 0.7781 0.4479 0.6957 0.3336 0.6154 0.4893 0.7420 0.4984 0.7377 0.4808 0.6601 0.3386 0.5917 0.4836 0.6912 0.4857 0.7079 0.5423 0.8068 0.3296 0.7652 0.5232 0.7876 0.5623 0.4156 0.6383 0.4685 0.5665 0.6055 0.8162 0.7709 0.7762 0.8144
1.0394 45.2899 200000 1.5598 0.0013 4.7580 2.2503 0.5424 0.7652 0.4188 0.6411 0.5339 0.7796 0.5744 0.7708 0.4461 0.6948 0.3397 0.6138 0.5024 0.7430 0.5046 0.7437 0.4778 0.6585 0.3314 0.5551 0.4977 0.6963 0.4902 0.7065 0.5365 0.8041 0.3187 0.7456 0.5171 0.7895 0.2577 0.5526 0.6165 0.4770 0.5211 0.6022 0.8101 0.7717 0.7609 0.8128

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
19.1M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.