philschmid's picture
philschmid HF staff
End of training
05fe5d5
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
model-index:
  - name: deberta-v3-xsmall-emotion
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.932

deberta-v3-xsmall-emotion

This model is a fine-tuned version of microsoft/deberta-v3-xsmall on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1877
  • Accuracy: 0.932

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3683 1.0 500 0.8479 0.6975
0.547 2.0 1000 0.2881 0.905
0.2378 3.0 1500 0.2116 0.925
0.1704 4.0 2000 0.1877 0.932
0.1392 5.0 2500 0.1718 0.9295

Framework versions

  • Transformers 4.12.3
  • Pytorch 1.9.1
  • Datasets 1.15.1
  • Tokenizers 0.10.3