lewtun HF staff commited on
Commit
889d9a1
1 Parent(s): edfb865

Add evaluation results on banking77 dataset

Browse files

Beep boop, I am a bot from Hugging Face's automatic model evaluator 👋!\
Your model has been evaluated on the [banking77](https://huggingface.co./datasets/banking77) dataset by

@lewtun

, using the predictions stored [here](https://huggingface.co./datasets/autoevaluate/autoeval-staging-eval-project-f87a1758-7384799).\
Accept this pull request to see the results displayed on the [Hub leaderboard](https://huggingface.co./spaces/autoevaluate/leaderboards?dataset=banking77).\
Evaluate your model on more datasets [here](https://huggingface.co./spaces/autoevaluate/model-evaluator?dataset=banking77).

Files changed (1) hide show
  1. README.md +65 -12
README.md CHANGED
@@ -2,28 +2,81 @@
2
  tags: autotrain
3
  language: en
4
  widget:
5
- - text: "I am still waiting on my card?"
6
  datasets:
7
  - banking77
8
  model-index:
9
  - name: BERT-Banking77
10
  results:
11
- - task:
12
  name: Text Classification
13
  type: text-classification
14
  dataset:
15
- name: "BANKING77"
16
  type: banking77
17
  metrics:
18
- - name: Accuracy
19
- type: accuracy
20
- value: 92.64
21
- - name: Macro F1
22
- type: macro-f1
23
- value: 92.64
24
- - name: Weighted F1
25
- type: weighted-f1
26
- value: 92.60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  co2_eq_emissions: 0.03330651014155927
28
  ---
29
  # `BERT-Banking77` Model Trained Using AutoTrain
 
2
  tags: autotrain
3
  language: en
4
  widget:
5
+ - text: I am still waiting on my card?
6
  datasets:
7
  - banking77
8
  model-index:
9
  - name: BERT-Banking77
10
  results:
11
+ - task:
12
  name: Text Classification
13
  type: text-classification
14
  dataset:
15
+ name: BANKING77
16
  type: banking77
17
  metrics:
18
+ - name: Accuracy
19
+ type: accuracy
20
+ value: 92.64
21
+ - name: Macro F1
22
+ type: macro-f1
23
+ value: 92.64
24
+ - name: Weighted F1
25
+ type: weighted-f1
26
+ value: 92.6
27
+ - task:
28
+ type: text-classification
29
+ name: Text Classification
30
+ dataset:
31
+ name: banking77
32
+ type: banking77
33
+ config: default
34
+ split: test
35
+ metrics:
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.9275974025974026
39
+ verified: true
40
+ - name: Precision Macro
41
+ type: precision
42
+ value: 0.9305185253845069
43
+ verified: true
44
+ - name: Precision Micro
45
+ type: precision
46
+ value: 0.9275974025974026
47
+ verified: true
48
+ - name: Precision Weighted
49
+ type: precision
50
+ value: 0.9305185253845071
51
+ verified: true
52
+ - name: Recall Macro
53
+ type: recall
54
+ value: 0.9275974025974028
55
+ verified: true
56
+ - name: Recall Micro
57
+ type: recall
58
+ value: 0.9275974025974026
59
+ verified: true
60
+ - name: Recall Weighted
61
+ type: recall
62
+ value: 0.9275974025974026
63
+ verified: true
64
+ - name: F1 Macro
65
+ type: f1
66
+ value: 0.927623314966026
67
+ verified: true
68
+ - name: F1 Micro
69
+ type: f1
70
+ value: 0.9275974025974026
71
+ verified: true
72
+ - name: F1 Weighted
73
+ type: f1
74
+ value: 0.927623314966026
75
+ verified: true
76
+ - name: loss
77
+ type: loss
78
+ value: 0.3199225962162018
79
+ verified: true
80
  co2_eq_emissions: 0.03330651014155927
81
  ---
82
  # `BERT-Banking77` Model Trained Using AutoTrain