Update README.md
#1
by
philipp-zettl
- opened
- .gitattributes +1 -0
- README.md +32 -3
- gpt-p_CHARS_CHAT_vocab_size=33n_embed=384context_size=256n_layer=6n_head=6dropout=0.2 +3 -0
- train.py +129 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
gpt-p_CHARS_CHAT_vocab_size=33n_embed=384context_size=256n_layer=6n_head=6dropout=0.2 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,32 @@
|
|
1 |
-
---
|
2 |
-
license: cc0-1.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc0-1.0
|
3 |
+
datasets:
|
4 |
+
- Lichess/standard-chess-games
|
5 |
+
pipeline_tag: text2text-generation
|
6 |
+
tags:
|
7 |
+
- chess
|
8 |
+
---
|
9 |
+
# Model card for chessPT
|
10 |
+
A pretrained Decoder only transformer model for chess move prediction.
|
11 |
+
|
12 |
+
## Intended use
|
13 |
+
Predict new moves in a chess game based on PGN tokens.
|
14 |
+
|
15 |
+
## Implementation
|
16 |
+
The model implementation is based on Andrej Karpathy's [nanoGPT](https://github.com/karpathy/nanoGPT) following the webseries "Zero to Hero" on [youtube](https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ).
|
17 |
+
|
18 |
+
## Training
|
19 |
+
You can find the training script in the repositories files under `train.py`.
|
20 |
+
This also contains the used parameters
|
21 |
+
```python
|
22 |
+
context_size = 256
|
23 |
+
batch_size = 128
|
24 |
+
max_iters = 30_000
|
25 |
+
learning_rate = 3e-5
|
26 |
+
eval_interval = 100
|
27 |
+
eval_iters = 20
|
28 |
+
n_embed = 384
|
29 |
+
n_layer = 6
|
30 |
+
n_head = 6
|
31 |
+
dropout = 0.2
|
32 |
+
```
|
gpt-p_CHARS_CHAT_vocab_size=33n_embed=384context_size=256n_layer=6n_head=6dropout=0.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfda5c18a6a7dcc83b73857034e48b26b420ca8be96c03c7f50097622d78a298
|
3 |
+
size 52603542
|
train.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from gpt_p.model import DecoderTransformer
|
6 |
+
from datasets import load_dataset
|
7 |
+
|
8 |
+
|
9 |
+
torch.manual_seed(420) # 1337
|
10 |
+
|
11 |
+
base_name = 'gpt-p_CHARS_CHAT_'
|
12 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
13 |
+
context_size = 256 # how many tokens to consider while generating the next
|
14 |
+
batch_size = 128 # how many independent sequences will we process in parallel
|
15 |
+
max_iters = 30_000
|
16 |
+
learning_rate = 3e-5
|
17 |
+
eval_interval = 100
|
18 |
+
eval_iters = 20 # number evaluation iterations
|
19 |
+
n_embed = 384 # embedding size
|
20 |
+
n_layer = 6 # number of transformer layers
|
21 |
+
n_head = 6
|
22 |
+
dropout = 0.2 # dropout factor
|
23 |
+
|
24 |
+
dataset = load_dataset('Lichess/standard-chess-games', split='train')
|
25 |
+
content = '\n'.join(list(filter(lambda x: 'eval' not in x, dataset['movetext'])))
|
26 |
+
|
27 |
+
## BUILD DATA SET ##
|
28 |
+
book = content
|
29 |
+
characters = sorted(list(set(book)))
|
30 |
+
vocab_size = len(characters)
|
31 |
+
|
32 |
+
# convert
|
33 |
+
stoi = {ch: idx for idx, ch in enumerate(characters)}
|
34 |
+
itos = {idx: ch for idx, ch in enumerate(characters)}
|
35 |
+
|
36 |
+
encode = lambda s: [stoi[c] for c in s]
|
37 |
+
decode = lambda i: ''.join([itos[x] for x in i])
|
38 |
+
|
39 |
+
|
40 |
+
data = torch.tensor(encode(book), dtype=torch.long)
|
41 |
+
n = int(0.9 * len(data))
|
42 |
+
train_data = data[:n]
|
43 |
+
val_data = data[n:]
|
44 |
+
|
45 |
+
|
46 |
+
def get_batch(split):
|
47 |
+
data = train_data if split == 'train' else val_data
|
48 |
+
idx = torch.randint(len(data) - context_size, (batch_size,))
|
49 |
+
x = torch.stack([data[i:i+context_size] for i in idx])
|
50 |
+
y = torch.stack([data[i+1:i+context_size+1] for i in idx])
|
51 |
+
return x.to(device), y.to(device)
|
52 |
+
|
53 |
+
## END BUILD DATA SET ##
|
54 |
+
## MODEL DEFINITION ##
|
55 |
+
|
56 |
+
def print_sample(input_value=None):
|
57 |
+
if input_value is None:
|
58 |
+
input_value = torch.zeros((1,1), dtype=torch.long, device=device)
|
59 |
+
print('Validation sample:')
|
60 |
+
sample = decode(model.generate(input_value, max_new_tokens=250, context_size=context_size)[0].tolist())
|
61 |
+
if '<E>' in sample:
|
62 |
+
sample = sample[:sample.find('<E>') + 3]
|
63 |
+
print(sample)
|
64 |
+
|
65 |
+
|
66 |
+
@torch.no_grad()
|
67 |
+
def estimate_loss():
|
68 |
+
out = {}
|
69 |
+
model.eval()
|
70 |
+
for split in ['train', 'val']:
|
71 |
+
losses = torch.zeros(eval_iters)
|
72 |
+
for k in range(eval_iters):
|
73 |
+
X, Y = get_batch(split)
|
74 |
+
logits, loss = model(X, Y)
|
75 |
+
losses[k] = loss.item()
|
76 |
+
out[split] = losses.mean()
|
77 |
+
|
78 |
+
input_string = '1. e4 g6'
|
79 |
+
print_sample(torch.tensor(encode(input_string), dtype=torch.long, device=device).view((1, len(input_string))))
|
80 |
+
model.train()
|
81 |
+
return out
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
args = argparse.ArgumentParser()
|
86 |
+
args.add_argument('--load', '-l', action='store_true', default=False, help='Load model state.')
|
87 |
+
args.add_argument('--inference', '-i', action='store_true', default=False, help='Run only inference')
|
88 |
+
|
89 |
+
args = args.parse_args()
|
90 |
+
|
91 |
+
params = {'vocab_size': vocab_size, 'n_embed': n_embed, 'context_size': context_size, 'n_layer': n_layer, 'n_head': n_head, 'dropout': dropout}
|
92 |
+
if args.load:
|
93 |
+
m = DecoderTransformer(vocab_size, n_embed, context_size, n_layer, n_head, dropout)
|
94 |
+
m.load_state_dict(torch.load(f'./models/{base_name}' + ''.join(f'{key}={v}' for key, v in params.items())))
|
95 |
+
else:
|
96 |
+
m = DecoderTransformer(vocab_size, n_embed, context_size, n_layer, n_head, dropout)
|
97 |
+
model = m.to(device)
|
98 |
+
|
99 |
+
if args.inference:
|
100 |
+
exit()
|
101 |
+
## END MODEL ##
|
102 |
+
## START TRAINING ##
|
103 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
104 |
+
|
105 |
+
for step in range(max_iters):
|
106 |
+
if step % eval_interval == 0:
|
107 |
+
losses = estimate_loss()
|
108 |
+
print(f'step {step:4d}: train loss {losses["train"]:.4f}, val loss: {losses["val"]:.4f}')
|
109 |
+
|
110 |
+
xb, yb = get_batch('train')
|
111 |
+
|
112 |
+
logits, loss = model(xb, yb)
|
113 |
+
optimizer.zero_grad(set_to_none=True)
|
114 |
+
loss.backward()
|
115 |
+
optimizer.step()
|
116 |
+
|
117 |
+
print()
|
118 |
+
print('Loss:')
|
119 |
+
print(loss.item())
|
120 |
+
|
121 |
+
## END TRAINING ##
|
122 |
+
## START VALIDATION ##
|
123 |
+
|
124 |
+
## END VALIDATION ##
|
125 |
+
|
126 |
+
# save model weights
|
127 |
+
torch.save(model.state_dict(), f'./models/{base_name}' + ''.join([f'{key}={v}' for key, v in params.items()]))
|
128 |
+
with open('train.log', 'a') as f:
|
129 |
+
f.write(f'{max_iters},{learning_rate}\n')
|