|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: trueparagraph.ai-DistilBERT |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# trueparagraph.ai-DistilBERT |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.9427 |
|
- F1: 0.9429 |
|
- Precision: 0.9352 |
|
- Recall: 0.9506 |
|
- Mcc: 0.8854 |
|
- Roc Auc: 0.9427 |
|
- Pr Auc: 0.9136 |
|
- Log Loss: 0.9232 |
|
- Loss: 0.3017 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | F1 | Precision | Recall | Mcc | Roc Auc | Pr Auc | Log Loss | Validation Loss | |
|
|:-------------:|:------:|:----:|:--------:|:------:|:---------:|:------:|:------:|:-------:|:------:|:--------:|:---------------:| |
|
| 0.5806 | 0.6297 | 500 | 0.8207 | 0.8349 | 0.7708 | 0.9108 | 0.6525 | 0.8211 | 0.7464 | 3.1049 | 0.4137 | |
|
| 0.3015 | 1.2594 | 1000 | 0.8919 | 0.8885 | 0.9137 | 0.8646 | 0.7849 | 0.8918 | 0.8574 | 1.7818 | 0.3298 | |
|
| 0.2287 | 1.8892 | 1500 | 0.9175 | 0.9155 | 0.9330 | 0.8987 | 0.8354 | 0.9174 | 0.8889 | 1.3631 | 0.2585 | |
|
| 0.1444 | 2.5189 | 2000 | 0.9310 | 0.9312 | 0.9240 | 0.9386 | 0.8621 | 0.9310 | 0.8978 | 1.1225 | 0.2439 | |
|
| 0.1149 | 3.1486 | 2500 | 0.9272 | 0.9304 | 0.8874 | 0.9778 | 0.8589 | 0.9274 | 0.8788 | 1.1773 | 0.3574 | |
|
| 0.0716 | 3.7783 | 3000 | 0.9401 | 0.9405 | 0.9311 | 0.95 | 0.8805 | 0.9402 | 0.9095 | 0.9662 | 0.2655 | |
|
| 0.0411 | 4.4081 | 3500 | 0.9427 | 0.9429 | 0.9352 | 0.9506 | 0.8854 | 0.9427 | 0.9136 | 0.9232 | 0.3017 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|