freeway_vit_Model / README.md
peter881122's picture
Training in progress, step 500
36ca750 verified
|
raw
history blame
5.81 kB
---
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swinModel
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/huangyangyu/huggingface/runs/mqnke3pt)
# swinModel
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co./facebook/convnext-tiny-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4645
- Accuracy: 0.7823
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.5524 | 0.2278 | 100 | 0.3380 | 0.9845 |
| 0.4727 | 0.4556 | 200 | 0.3134 | 0.9439 |
| 0.3821 | 0.6834 | 300 | 0.3179 | 0.8939 |
| 0.2765 | 0.9112 | 400 | 0.3308 | 0.8603 |
| 0.1905 | 1.1390 | 500 | 0.4489 | 0.8069 |
| 0.1258 | 1.3667 | 600 | 0.5830 | 0.7731 |
| 0.0846 | 1.5945 | 700 | 0.4515 | 0.8439 |
| 0.064 | 1.8223 | 800 | 0.5274 | 0.8248 |
| 0.0494 | 2.0501 | 900 | 0.6575 | 0.7969 |
| 0.0378 | 2.2779 | 1000 | 0.6267 | 0.8261 |
| 0.0284 | 2.5057 | 1100 | 0.8875 | 0.7677 |
| 0.023 | 2.7335 | 1200 | 1.0218 | 0.7502 |
| 0.0225 | 2.9613 | 1300 | 0.8597 | 0.7930 |
| 0.0158 | 3.1891 | 1400 | 0.9559 | 0.7875 |
| 0.0134 | 3.4169 | 1500 | 0.7133 | 0.8378 |
| 0.0146 | 3.6446 | 1600 | 0.8297 | 0.8159 |
| 0.0116 | 3.8724 | 1700 | 0.9716 | 0.7930 |
| 0.0099 | 4.1002 | 1800 | 0.8118 | 0.8289 |
| 0.009 | 4.3280 | 1900 | 0.8361 | 0.8305 |
| 0.0059 | 4.5558 | 2000 | 0.9536 | 0.8127 |
| 0.009 | 4.7836 | 2100 | 1.0436 | 0.8003 |
| 0.0107 | 5.0114 | 2200 | 1.0988 | 0.7929 |
| 0.0077 | 5.2392 | 2300 | 0.9100 | 0.8344 |
| 0.007 | 5.4670 | 2400 | 0.9920 | 0.8186 |
| 0.0037 | 5.6948 | 2500 | 1.0256 | 0.8130 |
| 0.0073 | 5.9226 | 2600 | 1.5456 | 0.7387 |
| 0.0055 | 6.1503 | 2700 | 1.2020 | 0.7793 |
| 0.0039 | 6.3781 | 2800 | 1.1095 | 0.8048 |
| 0.0022 | 6.6059 | 2900 | 1.2638 | 0.7887 |
| 0.0042 | 6.8337 | 3000 | 1.0389 | 0.8263 |
| 0.005 | 7.0615 | 3100 | 1.3570 | 0.7763 |
| 0.0017 | 7.2893 | 3200 | 1.6866 | 0.7303 |
| 0.0024 | 7.5171 | 3300 | 1.4244 | 0.7679 |
| 0.0036 | 7.7449 | 3400 | 1.4379 | 0.7609 |
| 0.0032 | 7.9727 | 3500 | 1.1855 | 0.8006 |
| 0.0016 | 8.2005 | 3600 | 1.1089 | 0.8163 |
| 0.0023 | 8.4282 | 3700 | 0.9546 | 0.8441 |
| 0.0022 | 8.6560 | 3800 | 1.0083 | 0.8378 |
| 0.002 | 8.8838 | 3900 | 1.6526 | 0.7368 |
| 0.0032 | 9.1116 | 4000 | 1.5307 | 0.7619 |
| 0.0008 | 9.3394 | 4100 | 1.1384 | 0.8191 |
| 0.002 | 9.5672 | 4200 | 1.2104 | 0.8063 |
| 0.0031 | 9.7950 | 4300 | 1.5793 | 0.7564 |
| 0.0024 | 10.0228 | 4400 | 1.3544 | 0.7857 |
| 0.0035 | 10.2506 | 4500 | 1.5046 | 0.7667 |
| 0.0009 | 10.4784 | 4600 | 1.8010 | 0.7306 |
| 0.0007 | 10.7062 | 4700 | 1.2062 | 0.8115 |
| 0.0025 | 10.9339 | 4800 | 1.2110 | 0.8127 |
| 0.0016 | 11.1617 | 4900 | 1.3772 | 0.7875 |
| 0.001 | 11.3895 | 5000 | 1.3586 | 0.7947 |
| 0.0024 | 11.6173 | 5100 | 1.2359 | 0.8094 |
| 0.0012 | 11.8451 | 5200 | 0.8793 | 0.8679 |
| 0.0011 | 12.0729 | 5300 | 1.5563 | 0.7648 |
| 0.0021 | 12.3007 | 5400 | 1.3154 | 0.8003 |
| 0.0018 | 12.5285 | 5500 | 1.2115 | 0.8168 |
| 0.001 | 12.7563 | 5600 | 1.4905 | 0.7773 |
| 0.0012 | 12.9841 | 5700 | 1.4290 | 0.7868 |
| 0.0022 | 13.2118 | 5800 | 1.1928 | 0.8214 |
| 0.0023 | 13.4396 | 5900 | 1.2761 | 0.8077 |
| 0.0014 | 13.6674 | 6000 | 1.1804 | 0.8211 |
| 0.0021 | 13.8952 | 6100 | 1.3523 | 0.7965 |
| 0.0007 | 14.1230 | 6200 | 1.2330 | 0.8128 |
| 0.0008 | 14.3508 | 6300 | 1.3563 | 0.7955 |
| 0.0004 | 14.5786 | 6400 | 1.3969 | 0.7903 |
| 0.0011 | 14.8064 | 6500 | 1.4645 | 0.7823 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.1.1
- Datasets 2.19.2
- Tokenizers 0.19.1