|
--- |
|
language: |
|
- fa |
|
- multilingual |
|
thumbnail: "https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg" |
|
tags: |
|
- multiple-choice |
|
- mbert |
|
- persian |
|
- farsi |
|
pipeline_tag: text-classification |
|
license: "CC BY-NC-SA 4.0" |
|
datasets: |
|
- parsinlu |
|
metrics: |
|
- accuracy |
|
--- |
|
|
|
# Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) |
|
|
|
This is a mbert-based model for multiple-choice question answering. |
|
Here is an example of how you can run this model: |
|
|
|
```python |
|
from typing import List |
|
import torch |
|
from transformers import AutoConfig, AutoModelForMultipleChoice, AutoTokenizer |
|
|
|
model_name = "persiannlp/mbert-base-parsinlu-multiple-choice" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
config = AutoConfig.from_pretrained(model_name) |
|
model = AutoModelForMultipleChoice.from_pretrained(model_name, config=config) |
|
|
|
|
|
def run_model(question: str, candicates: List[str]): |
|
assert len(candicates) == 4, "you need four candidates" |
|
choices_inputs = [] |
|
for c in candicates: |
|
text_a = "" # empty context |
|
text_b = question + " " + c |
|
inputs = tokenizer( |
|
text_a, |
|
text_b, |
|
add_special_tokens=True, |
|
max_length=128, |
|
padding="max_length", |
|
truncation=True, |
|
return_overflowing_tokens=True, |
|
) |
|
choices_inputs.append(inputs) |
|
|
|
input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs]) |
|
output = model(input_ids=input_ids) |
|
print(output) |
|
return output |
|
|
|
|
|
run_model(question="وسیع ترین کشور جهان کدام است؟", candicates=["آمریکا", "کانادا", "روسیه", "چین"]) |
|
run_model(question="طامع یعنی ؟", candicates=["آزمند", "خوش شانس", "محتاج", "مطمئن"]) |
|
run_model( |
|
question="زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده ", |
|
candicates=["روز اول", "روز دوم", "روز سوم", "هیچکدام"]) |
|
``` |
|
|
|
|
|
For more details, visit this page: https://github.com/persiannlp/parsinlu/ |
|
|