metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: >-
On December 15, 2022, the European Union Member States formally adopted
the EU’s Pillar Two Directive, which generally provides for a minimum
effective tax rate of 15%.
sentences:
- >-
What were the key business segments of The Goldman Sachs Group, Inc. as
reported in their 2023 financial disclosures?
- >-
What are the aspects of the EU Pillar Two Directive adopted in December
2022?
- >-
How does customer size and geography affect the determination of SSP for
products and services?
- source_sentence: >-
Schwab's management of credit risk involves policies and procedures that
include setting and reviewing credit limits, monitoring of credit limits
and quality of counterparties, and adjusting margin, PAL, option, and
futures requirements for certain securities and instruments.
sentences:
- What measures does Schwab take to manage credit risk?
- >-
How might a 10% change in the obsolescence reserve percentage impact net
earnings?
- >-
How did the discount rates for Depop and Elo7 change during their 2022
impairments analysis?
- source_sentence: >-
While we believe that our ESG goals align with our long-term growth
strategy and financial and operational priorities, they are aspirational
and may change, and there is no guarantee or promise that they will be
met.
sentences:
- >-
What is the relationship between the ESG goals and the long-term growth
strategy?
- >-
What was the total revenue in millions for 2023 according to the
disaggregated revenue information by segment?
- How much did the net cumulative medical payments amount to in 2023?
- source_sentence: >-
The total unrealized losses on U.S. Treasury securities amounted to $134
million.
sentences:
- >-
What critical audit matters were identified related to the revenue
recognition in the Connectivity & Platforms businesses at Comcast in
2023?
- >-
What were the total unrealized losses on U.S. Treasury securities as of
the last reporting date?
- >-
How is Revenue per Available Room (RevPAR) calculated and what does it
indicate?
- source_sentence: >-
The Chief Executive etc. does not manage segment results or allocate
resources to segments when considering these costs and they are therefore
excluded from our definition of segment income.
sentences:
- How are tax returns affecting the company's tax provisions when audited?
- >-
What was the increase in sales and marketing expenses for the year ended
December 31, 2023 compared to 2022?
- >-
What components are excluded from segment income definition according to
company management?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7142857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8585714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7142857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1717142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7142857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8585714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8098414318705203
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7796729024943311
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7831593716959953
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7157142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8242857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8942857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7157142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27476190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08942857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7157142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8242857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8942857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.805674034217217
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7771672335600905
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7814319590791096
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7057142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8185714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8528571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8928571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7057142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17057142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08928571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7057142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8185714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8528571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8928571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7998364446362882
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7700413832199544
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7739467761950781
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6871428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8057142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8385714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8871428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6871428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26857142857142857
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1677142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0887142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6871428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8057142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8385714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8871428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7864888199817319
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7544109977324263
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7584408188949701
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("pavanmantha/bge-base-en-sec10k-embed")
sentences = [
'The Chief Executive etc. does not manage segment results or allocate resources to segments when considering these costs and they are therefore excluded from our definition of segment income.',
'What components are excluded from segment income definition according to company management?',
'What was the increase in sales and marketing expenses for the year ended December 31, 2023 compared to 2022?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7143 |
cosine_accuracy@3 |
0.83 |
cosine_accuracy@5 |
0.8586 |
cosine_accuracy@10 |
0.9043 |
cosine_precision@1 |
0.7143 |
cosine_precision@3 |
0.2767 |
cosine_precision@5 |
0.1717 |
cosine_precision@10 |
0.0904 |
cosine_recall@1 |
0.7143 |
cosine_recall@3 |
0.83 |
cosine_recall@5 |
0.8586 |
cosine_recall@10 |
0.9043 |
cosine_ndcg@10 |
0.8098 |
cosine_mrr@10 |
0.7797 |
cosine_map@100 |
0.7832 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7157 |
cosine_accuracy@3 |
0.8243 |
cosine_accuracy@5 |
0.8543 |
cosine_accuracy@10 |
0.8943 |
cosine_precision@1 |
0.7157 |
cosine_precision@3 |
0.2748 |
cosine_precision@5 |
0.1709 |
cosine_precision@10 |
0.0894 |
cosine_recall@1 |
0.7157 |
cosine_recall@3 |
0.8243 |
cosine_recall@5 |
0.8543 |
cosine_recall@10 |
0.8943 |
cosine_ndcg@10 |
0.8057 |
cosine_mrr@10 |
0.7772 |
cosine_map@100 |
0.7814 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7057 |
cosine_accuracy@3 |
0.8186 |
cosine_accuracy@5 |
0.8529 |
cosine_accuracy@10 |
0.8929 |
cosine_precision@1 |
0.7057 |
cosine_precision@3 |
0.2729 |
cosine_precision@5 |
0.1706 |
cosine_precision@10 |
0.0893 |
cosine_recall@1 |
0.7057 |
cosine_recall@3 |
0.8186 |
cosine_recall@5 |
0.8529 |
cosine_recall@10 |
0.8929 |
cosine_ndcg@10 |
0.7998 |
cosine_mrr@10 |
0.77 |
cosine_map@100 |
0.7739 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6871 |
cosine_accuracy@3 |
0.8057 |
cosine_accuracy@5 |
0.8386 |
cosine_accuracy@10 |
0.8871 |
cosine_precision@1 |
0.6871 |
cosine_precision@3 |
0.2686 |
cosine_precision@5 |
0.1677 |
cosine_precision@10 |
0.0887 |
cosine_recall@1 |
0.6871 |
cosine_recall@3 |
0.8057 |
cosine_recall@5 |
0.8386 |
cosine_recall@10 |
0.8871 |
cosine_ndcg@10 |
0.7865 |
cosine_mrr@10 |
0.7544 |
cosine_map@100 |
0.7584 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 9 tokens
- mean: 46.84 tokens
- max: 326 tokens
|
- min: 8 tokens
- mean: 20.44 tokens
- max: 43 tokens
|
- Samples:
positive |
anchor |
The federal banking regulators’ guidance on sound incentive compensation practices sets forth three key principles for incentive compensation arrangements that are designed to help ensure such plans do not encourage imprudent risk-taking and align with the safety and soundness of the organization. These principles include balancing risk with financial results, compatibility with internal controls and risk management, and support from strong corporate governance with effective oversight by the board. |
What are the three principles set forth by federal banking regulators' guidance on incentive compensation practices? |
Delta Air Lines generated a free cash flow of $2,003 million in 2023. This figure was adjusted for several factors including net redemptions of short-term investments and a pilot agreement payment of $735 million. |
How much free cash flow did Delta Air Lines generate in 2023? |
Inherent in the qualitative assessment are estimates and assumptions about our consideration of events and circumstances that may indicate a potential impairment, including industry and market conditions, expected cost pressures, expected financial performance, and general macroeconomic conditions. |
What does the qualitative assessment of goodwill consider regarding possible impairment? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.1625 |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7429 |
0.7568 |
0.7688 |
0.7724 |
1.6244 |
20 |
0.4282 |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7541 |
0.7691 |
0.7802 |
0.7828 |
2.4365 |
30 |
0.3086 |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7581 |
0.7731 |
0.7810 |
0.7838 |
3.2487 |
40 |
0.2432 |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7584 |
0.7739 |
0.7814 |
0.7832 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}