metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: >-
In 2023, total government-based programs, including Medicare, Medicaid,
and other government-based programs, contributed 67% to the U.S. dialysis
patient service revenues.
sentences:
- >-
How does Iron Mountain's reported EPS fully diluted from net income in
2023 compare to 2022?
- >-
What was the total percentage of U.S. dialysis patient service revenues
coming from government-based programs in 2023?
- What year did the company introduce multiplex theatres?
- source_sentence: >-
The gross realized losses on sales of AFS debt associated for 2023
amounted to $514 million, indicating a negative financial outcome from
these transactions during the year.
sentences:
- >-
What were the gross realized losses on sales of AFS debt securities in
2023?
- >-
How is information about legal proceedings described in the Annual
Report on Form 10-K?
- >-
What sections are included alongside the Financial Statements in this
report?
- source_sentence: >-
Other income, net, changed favorably by $215 million in the year ended
December 31, 2023 as compared to the year ended December 31, 2022. The
favorable change was primarily due to fluctuations in foreign currency
exchange rates on our intercompany balances.
sentences:
- >-
What was the monetary change in other income (expense), net, from 2022
to 2023?
- >-
What strategic actions has Walmart International taken over the last
three years?
- What is described under Item 8 in the context of a financial document?
- source_sentence: >-
Segments The Company manages its business primarily on a geographic basis.
The Company’s reportable segments consist of the Americas, Europe, Greater
China, Japan and Rest of Asia Pacific.
sentences:
- >-
What is the total debt repayment obligation mentioned in the financial
outline?
- What segments does the Company manage its business on?
- >-
What is the title of Item 8 which contains page information in a
financial document?
- source_sentence: >-
Item 8 typically refers to Financial Statements and Supplementary Data in
a document.
sentences:
- What is the primary function of Etsy's online marketplaces?
- >-
What are the maximum leverage ratios specified under the Senior Credit
Facilities for the periods ending fourth quarter of 2023 and first
quarter of 2024?
- What does Item 8 in a document usually represent?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7057142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8371428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8742857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9128571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7057142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17485714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09128571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7057142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8371428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8742857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9128571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8114149232737874
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7786632653061224
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7821804400415905
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7057142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8328571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9128571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7057142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2776190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17428571428571427
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09128571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7057142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8328571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9128571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8108495475926208
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7780068027210884
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7816465534941897
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7157142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8342857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7157142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27809523809523806
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7157142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8342857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8123157823677117
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7823004535147391
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7862892219643212
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6928571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8614285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9028571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6928571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17228571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09028571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6928571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8614285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9028571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7975011441256048
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7638248299319729
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7673061455577762
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("pavanmantha/bge-base-en-honsec10k-embed")
sentences = [
'Item 8 typically refers to Financial Statements and Supplementary Data in a document.',
'What does Item 8 in a document usually represent?',
'What are the maximum leverage ratios specified under the Senior Credit Facilities for the periods ending fourth quarter of 2023 and first quarter of 2024?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7057 |
cosine_accuracy@3 |
0.8371 |
cosine_accuracy@5 |
0.8743 |
cosine_accuracy@10 |
0.9129 |
cosine_precision@1 |
0.7057 |
cosine_precision@3 |
0.279 |
cosine_precision@5 |
0.1749 |
cosine_precision@10 |
0.0913 |
cosine_recall@1 |
0.7057 |
cosine_recall@3 |
0.8371 |
cosine_recall@5 |
0.8743 |
cosine_recall@10 |
0.9129 |
cosine_ndcg@10 |
0.8114 |
cosine_mrr@10 |
0.7787 |
cosine_map@100 |
0.7822 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7057 |
cosine_accuracy@3 |
0.8329 |
cosine_accuracy@5 |
0.8714 |
cosine_accuracy@10 |
0.9129 |
cosine_precision@1 |
0.7057 |
cosine_precision@3 |
0.2776 |
cosine_precision@5 |
0.1743 |
cosine_precision@10 |
0.0913 |
cosine_recall@1 |
0.7057 |
cosine_recall@3 |
0.8329 |
cosine_recall@5 |
0.8714 |
cosine_recall@10 |
0.9129 |
cosine_ndcg@10 |
0.8108 |
cosine_mrr@10 |
0.778 |
cosine_map@100 |
0.7816 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7157 |
cosine_accuracy@3 |
0.8343 |
cosine_accuracy@5 |
0.87 |
cosine_accuracy@10 |
0.9057 |
cosine_precision@1 |
0.7157 |
cosine_precision@3 |
0.2781 |
cosine_precision@5 |
0.174 |
cosine_precision@10 |
0.0906 |
cosine_recall@1 |
0.7157 |
cosine_recall@3 |
0.8343 |
cosine_recall@5 |
0.87 |
cosine_recall@10 |
0.9057 |
cosine_ndcg@10 |
0.8123 |
cosine_mrr@10 |
0.7823 |
cosine_map@100 |
0.7863 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6929 |
cosine_accuracy@3 |
0.8171 |
cosine_accuracy@5 |
0.8614 |
cosine_accuracy@10 |
0.9029 |
cosine_precision@1 |
0.6929 |
cosine_precision@3 |
0.2724 |
cosine_precision@5 |
0.1723 |
cosine_precision@10 |
0.0903 |
cosine_recall@1 |
0.6929 |
cosine_recall@3 |
0.8171 |
cosine_recall@5 |
0.8614 |
cosine_recall@10 |
0.9029 |
cosine_ndcg@10 |
0.7975 |
cosine_mrr@10 |
0.7638 |
cosine_map@100 |
0.7673 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 44.43 tokens
- max: 248 tokens
|
- min: 7 tokens
- mean: 20.52 tokens
- max: 45 tokens
|
- Samples:
positive |
anchor |
Net deferred tax liabilities |
$ |
ITEM 3. LEGAL PROCEEDINGS Please see the legal proceedings described in Note 21. Commitments and Contingencies included in Item 8 of Part II of this report. |
In what part and item of the report is Note 21 located? |
During fiscal year 2023, we repurchased 10.4 million shares for approximately $1,295 million. |
What total amount was spent on share repurchases during fiscal year 2023? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.1537 |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7517 |
0.7620 |
0.7633 |
0.7636 |
1.6244 |
20 |
0.4387 |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7616 |
0.7802 |
0.7796 |
0.7769 |
2.4365 |
30 |
0.3113 |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7668 |
0.7837 |
0.7809 |
0.7821 |
3.2487 |
40 |
0.2554 |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7673 |
0.7863 |
0.7816 |
0.7822 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}