metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
library_name: peft
license: llama3.1
tags:
- axolotl
- generated_from_trainer
model-index:
- name: axolotl_llama3.1_trial
results: []
See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: pavan01729/GPT_AI_5.0_alpaca
type: alpaca
dataset_prepared_path:
val_set_size: 0
output_dir: ./outputs/llama3_qlora_out
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
# num_epochs: 100
max_steps: 10
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|end_of_text|>"
# mlflow configuration
mlflow_tracking_uri: "http://127.0.0.1:5000" # Replace with your MLflow server URI
mlflow_experiment_name: "llama3.1_8b"
hf_mlflow_log_artifacts: true # Set to true to log checkpoints as MLflow artifacts
hub_model_id: "pavan01729/axolotl_llama3.1_trial" # Set your Hugging Face repository ID here
push_to_hub: true # Set to true to enable pushing the model to the HF Hub
axolotl_llama3.1_trial
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
Training results
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1