paulrojasg's picture
Upload README.md with huggingface_hub
f2e4509 verified
metadata
language:
  - es
license: apache-2.0
datasets:
  - eriktks/conll2002
metrics:
  - precision
  - recall
  - f1
  - accuracy
pipeline_tag: token-classification

Model Name: bert-finetuned-ner-1

This is a BERT model fine-tuned for Named Entity Recognition (NER).

Model Description

This is a fine-tuned BERT model for Named Entity Recognition (NER) task using CONLL2002 dataset.

In the first part, the dataset must be pre-processed in order to give it to the model. This is done using the 🤗 Transformers and BERT tokenizers. Once this is done, finetuning is applied from bert-base-cased and using the 🤗 AutoModelForTokenClassification.

Finally, the model is trained obtaining the neccesary metrics for evaluating its performance (Precision, Recall, F1 and Accuracy)

Summary of executed tests can be found in: https://docs.google.com/spreadsheets/d/1lI7skNIvRurwq3LA5ps7JFK5TxToEx4s7Kaah3ezyQc/edit?usp=sharing

Model can be found in: https://huggingface.co./paulrojasg/bert-finetuned-ner-1

Github repository: https://github.com/paulrojasg/nlp_4th_workshop

Training

Training Details

  • Epochs: 10
  • Learning Rate: 2e-05
  • Weight Decay: 0.01
  • Batch Size (Train): 16
  • Batch Size (Eval): 8

Training Metrics

Epoch Training Loss Validation Loss Precision Recall F1 Score Accuracy
1 0.1729 0.1462 0.6739 0.7376 0.7043 0.9590
2 0.0750 0.1432 0.7030 0.7684 0.7342 0.9625
3 0.0496 0.1394 0.7725 0.7983 0.7852 0.9667
4 0.0351 0.1460 0.7678 0.8017 0.7844 0.9672
5 0.0255 0.1521 0.7656 0.8081 0.7863 0.9678
6 0.0182 0.1709 0.7573 0.8015 0.7787 0.9667
7 0.0134 0.1753 0.7794 0.8159 0.7973 0.9691
8 0.0110 0.1806 0.7674 0.8125 0.7893 0.9685
9 0.0080 0.1938 0.7724 0.8139 0.7926 0.9683
10 0.0072 0.1938 0.7722 0.8139 0.7925 0.9685

Authors

Made by:

  • Paul Rodrigo Rojas Guerrero
  • Jose Luis Hincapie Bucheli
  • Sebastián Idrobo Avirama

With help from: