Whisper Small Kn - Bharat Ramanathan

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1398
  • Wer: 23.8167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4126 0.1 500 2.2797 127.2639
0.2099 0.1 1000 0.1774 28.2494
0.1736 0.2 1500 0.1565 27.5733
0.1506 0.3 2000 0.1514 26.0331
0.1373 0.4 2500 0.1494 24.4177
0.1298 0.5 3000 0.1456 25.0563
0.1198 1.06 3500 0.1436 24.4177
0.1102 0.1 4000 0.1452 24.2675
0.1097 0.2 4500 0.1402 24.3050
0.105 0.3 5000 0.1398 23.8167

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using parambharat/whisper-small-kn 1

Evaluation results