from llama_index import SimpleKeywordTableIndex, Document from datetime import datetime, timedelta import requests import numpy as np import pandas as pd

Fetch historical price data

def fetch_price_data(symbol="ETHUSDT", interval="1h", limit=500): """ Fetch historical price data from Binance API. """ url = f"https://api.binance.com/api/v3/klines?symbol={symbol}&interval={interval}&limit={limit}" response = requests.get(url) data = response.json()

# Parse to DataFrame
df = pd.DataFrame(data, columns=[
    "timestamp", "open", "high", "low", "close", "volume", "close_time",
    "quote_asset_volume", "number_of_trades", "taker_buy_base",
    "taker_buy_quote", "ignore"
])
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
df["close"] = df["close"].astype(float)
return df[["timestamp", "close"]]

Prepare price history as documents

def prepare_documents(df, window_size=5): """ Convert sliding price windows into Llama documents. """ prices = df["close"].values timestamps = df["timestamp"].values

documents = []
for i in range(len(prices) - window_size):
    time_range = f"{timestamps[i]} to {timestamps[i + window_size]}"
    price_window = prices[i:i + window_size]
    content = f"Price trend from {time_range}: {price_window.tolist()}"
    documents.append(Document(content))
return documents

LlamaIndex-based predictive task

def train_with_llama_index(documents): """ Create a Simple Keyword Table Index to simulate trend prediction using LlamaIndex. """ index = SimpleKeywordTableIndex.from_documents(documents)

# Simulating a market prediction
prompt = (
    "Based on historical trends, what might be the next ETH/USDT price, "
    "assuming consistent linear progression? Focus on patterns."
)
response = index.query(prompt)
return response

Main pipeline

def main(): # Step 1: Fetch historical data symbol = "ETHUSDT" df = fetch_price_data(symbol) print("Fetched historical data:") print(df.head())

# Step 2: Prepare documents for LlamaIndex
window_size = 5
documents = prepare_documents(df, window_size)

# Step 3: Train a Simple Keyword Table Index and predict trends
prediction_response = train_with_llama_index(documents)

# Step 4: Display response
print(f"\nPrediction response from LlamaIndex:\n{prediction_response}")

Entry point

if name == "main": main()

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for parafmax/Price_Prediction_Using_LlamaIndex

Finetuned
(5)
this model

Dataset used to train parafmax/Price_Prediction_Using_LlamaIndex