bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5677
  • Precision: 0.3452
  • Recall: 0.5421
  • F1: 0.4218
  • Accuracy: 0.8688

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 13 0.5728 0.2077 0.3551 0.2621 0.8199
No log 2.0 26 0.5687 0.2889 0.3645 0.3223 0.8312
No log 3.0 39 0.5447 0.2857 0.4486 0.3491 0.8425
No log 4.0 52 0.5509 0.2881 0.4766 0.3592 0.8489
No log 5.0 65 0.5751 0.3121 0.4579 0.3712 0.8511
No log 6.0 78 0.5358 0.3851 0.5794 0.4627 0.8667
No log 7.0 91 0.5484 0.3491 0.5514 0.4275 0.8645
No log 8.0 104 0.5671 0.3580 0.5421 0.4312 0.8672
No log 9.0 117 0.5666 0.3494 0.5421 0.4249 0.8688
No log 10.0 130 0.5677 0.3452 0.5421 0.4218 0.8688

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
107
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train paopao0226/bert-finetuned-ner

Evaluation results