WD SwinV2 Tagger v3 with πŸ€— transformers

Converted from SmilingWolf/wd-swinv2-tagger-v3 to transformers library format.

Example

Installation

pip install transformers

Pipeline

from transformers import pipeline

pipe = pipeline(
    "image-classification",
    model="p1atdev/wd-swinv2-tagger-v3-hf",
    trust_remote_code=True,
)

print(pipe("sample.webp", top_k=15))
#[{'label': '1girl', 'score': 0.9973934888839722},
# {'label': 'solo', 'score': 0.9719744324684143},
# {'label': 'dress', 'score': 0.9539461135864258},
# {'label': 'hat', 'score': 0.9511678218841553},
# {'label': 'outdoors', 'score': 0.9438753128051758},
# ...

AutoModel

from PIL import Image

import numpy as np
import torch

from transformers import (
    AutoImageProcessor,
    AutoModelForImageClassification,
)

MODEL_NAME = "p1atdev/wd-swinv2-tagger-v3-hf"

model = AutoModelForImageClassification.from_pretrained(
    MODEL_NAME,
)
processor = AutoImageProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)

image = Image.open("sample.webp")
inputs = processor.preprocess(image, return_tensors="pt")

with torch.no_grad():
  outputs = model(**inputs.to(model.device, model.dtype))
logits = torch.sigmoid(outputs.logits[0]) # take the first logits

# get probabilities
results = {model.config.id2label[i]: logit.float() for i, logit in enumerate(logits)}
results = {
    k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True) if v > 0.35 # 35% threshold
}
print(results)  # rating tags and character tags are also included
#{'1girl': tensor(0.9974),
# 'solo': tensor(0.9720),
# 'dress': tensor(0.9539),
# 'hat': tensor(0.9512),
# 'outdoors': tensor(0.9439),
# ...

Accelerate with πŸ€— Optimum

Maybe about 30% faster and about 50% light weight model size than transformers version, but the accuracy is slightly degraded.

pip install optimum[onnxruntime] 
-from transformers import pipeline
+from optimum.pipelines import pipeline

pipe = pipeline(
    "image-classification",
    model="p1atdev/wd-swinv2-tagger-v3-hf",
    trust_remote_code=True,
)

print(pipe("sample.webp", top_k=15))
#[{'label': '1girl', 'score': 0.9966088533401489},
# {'label': 'solo', 'score': 0.9740601778030396},
# {'label': 'dress', 'score': 0.9618403911590576},
# {'label': 'hat', 'score': 0.9563733339309692},
# {'label': 'outdoors', 'score': 0.945336639881134},
# ...

Labels

All of rating tags have prefix rating: and character tags have prefix character:.

  • Rating tags: rating:general, rating:sensitive, ...
  • Character tags: character:frieren, character:hatsune miku, ...
Downloads last month
4,182
Safetensors
Model size
98M params
Tensor type
BF16
Β·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for p1atdev/wd-swinv2-tagger-v3-hf

Quantized
(1)
this model

Spaces using p1atdev/wd-swinv2-tagger-v3-hf 41