output_r1_iter_wo_p
This model is a fine-tuned version of t5-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1334
- Bleu: 0.0
- Gen Len: 2.432
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
No log | 1.0 | 27 | 0.2728 | 0.0 | 2.9953 |
No log | 2.0 | 54 | 0.2650 | 0.0 | 2.6791 |
No log | 3.0 | 81 | 0.2637 | 0.0 | 2.1874 |
No log | 4.0 | 108 | 0.2418 | 0.0 | 2.2973 |
No log | 5.0 | 135 | 0.2738 | 0.0 | 2.2494 |
No log | 6.0 | 162 | 0.1914 | 0.0 | 2.3812 |
No log | 7.0 | 189 | 0.1641 | 0.0 | 2.3983 |
No log | 8.0 | 216 | 0.1695 | 0.0 | 2.3995 |
No log | 9.0 | 243 | 0.1521 | 0.0 | 2.4167 |
No log | 10.0 | 270 | 0.1569 | 0.0 | 2.4167 |
No log | 11.0 | 297 | 0.1615 | 0.0 | 2.4137 |
No log | 12.0 | 324 | 0.1473 | 0.0 | 2.4238 |
No log | 13.0 | 351 | 0.1376 | 0.0 | 2.4255 |
No log | 14.0 | 378 | 0.1495 | 0.0 | 2.419 |
No log | 15.0 | 405 | 0.1334 | 0.0 | 2.432 |
No log | 16.0 | 432 | 0.1474 | 0.0 | 2.4214 |
No log | 17.0 | 459 | 0.1484 | 0.0 | 2.4291 |
No log | 18.0 | 486 | 0.1407 | 0.0 | 2.4297 |
0.1905 | 19.0 | 513 | 0.1568 | 0.0 | 2.4208 |
0.1905 | 20.0 | 540 | 0.1631 | 0.0 | 2.4261 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.13.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.