|
--- |
|
license: apache-2.0 |
|
base_model: google/t5-v1_1-large |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Sentiment-google-t5-v1_1-large-intra_model-dataset-frequency-model_annots_str |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Sentiment-google-t5-v1_1-large-intra_model-dataset-frequency-model_annots_str |
|
|
|
This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co./google/t5-v1_1-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 200 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 19.7788 | 1.0 | 44 | 23.9563 | |
|
| 15.9283 | 2.0 | 88 | 11.8553 | |
|
| 10.0222 | 3.0 | 132 | 9.4991 | |
|
| 8.9528 | 4.0 | 176 | 9.0638 | |
|
| 8.4671 | 5.0 | 220 | 8.7748 | |
|
| 8.189 | 6.0 | 264 | 8.6661 | |
|
| 8.2203 | 7.0 | 308 | 8.5367 | |
|
| 7.9303 | 8.0 | 352 | 8.1591 | |
|
| 7.5313 | 9.0 | 396 | 7.7616 | |
|
| 7.3476 | 10.0 | 440 | 7.4948 | |
|
| 7.1959 | 11.0 | 484 | 7.3478 | |
|
| 6.9493 | 12.0 | 528 | 7.2555 | |
|
| 6.8091 | 13.0 | 572 | 7.1311 | |
|
| 0.9281 | 14.0 | 616 | 0.6867 | |
|
| 0.7487 | 15.0 | 660 | 0.6683 | |
|
| 0.7383 | 16.0 | 704 | 0.6678 | |
|
| 0.7336 | 17.0 | 748 | 0.6632 | |
|
| 0.7256 | 18.0 | 792 | 0.6566 | |
|
| 0.7344 | 19.0 | 836 | 0.6584 | |
|
| 0.7237 | 20.0 | 880 | 0.6619 | |
|
| 0.7204 | 21.0 | 924 | 0.6619 | |
|
| 0.7088 | 22.0 | 968 | 0.6566 | |
|
| 0.7017 | 23.0 | 1012 | 0.6556 | |
|
| 0.7136 | 24.0 | 1056 | 0.6566 | |
|
| 0.7078 | 25.0 | 1100 | 0.6582 | |
|
| 0.7165 | 26.0 | 1144 | 0.6557 | |
|
| 0.706 | 27.0 | 1188 | 0.6559 | |
|
| 0.7146 | 28.0 | 1232 | 0.6537 | |
|
| 0.7138 | 29.0 | 1276 | 0.6546 | |
|
| 0.706 | 30.0 | 1320 | 0.6559 | |
|
| 0.7067 | 31.0 | 1364 | 0.6567 | |
|
| 0.7137 | 32.0 | 1408 | 0.6599 | |
|
| 0.7 | 33.0 | 1452 | 0.6550 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|