|
--- |
|
license: apache-2.0 |
|
base_model: google/t5-v1_1-large |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: SChem5Labels-google-t5-v1_1-large-inter_model-sorted-model_annots_str |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SChem5Labels-google-t5-v1_1-large-inter_model-sorted-model_annots_str |
|
|
|
This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co./google/t5-v1_1-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8994 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 200 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 20.7228 | 1.0 | 25 | 24.7182 | |
|
| 19.7481 | 2.0 | 50 | 23.4091 | |
|
| 19.3221 | 3.0 | 75 | 20.7043 | |
|
| 17.2262 | 4.0 | 100 | 15.0872 | |
|
| 14.7272 | 5.0 | 125 | 10.1222 | |
|
| 12.1186 | 6.0 | 150 | 9.0762 | |
|
| 10.3305 | 7.0 | 175 | 8.7090 | |
|
| 8.8199 | 8.0 | 200 | 8.4070 | |
|
| 8.2346 | 9.0 | 225 | 8.2048 | |
|
| 7.9113 | 10.0 | 250 | 8.1018 | |
|
| 7.6524 | 11.0 | 275 | 8.0398 | |
|
| 7.6476 | 12.0 | 300 | 7.9791 | |
|
| 7.4487 | 13.0 | 325 | 7.8957 | |
|
| 7.3635 | 14.0 | 350 | 7.7393 | |
|
| 7.2677 | 15.0 | 375 | 7.4303 | |
|
| 7.0316 | 16.0 | 400 | 7.1862 | |
|
| 6.7999 | 17.0 | 425 | 7.0031 | |
|
| 6.6811 | 18.0 | 450 | 6.8875 | |
|
| 6.6207 | 19.0 | 475 | 6.8224 | |
|
| 6.4587 | 20.0 | 500 | 6.7708 | |
|
| 6.3888 | 21.0 | 525 | 6.7248 | |
|
| 6.3971 | 22.0 | 550 | 6.6744 | |
|
| 6.3969 | 23.0 | 575 | 6.3850 | |
|
| 0.91 | 24.0 | 600 | 0.7331 | |
|
| 0.7237 | 25.0 | 625 | 0.6588 | |
|
| 0.6831 | 26.0 | 650 | 0.6276 | |
|
| 0.6785 | 27.0 | 675 | 0.6266 | |
|
| 0.6673 | 28.0 | 700 | 0.6269 | |
|
| 0.6728 | 29.0 | 725 | 0.6230 | |
|
| 0.6643 | 30.0 | 750 | 0.6204 | |
|
| 0.662 | 31.0 | 775 | 0.6187 | |
|
| 0.6664 | 32.0 | 800 | 0.6195 | |
|
| 0.6568 | 33.0 | 825 | 0.6180 | |
|
| 0.6453 | 34.0 | 850 | 0.6187 | |
|
| 0.6619 | 35.0 | 875 | 0.6260 | |
|
| 0.6539 | 36.0 | 900 | 0.6168 | |
|
| 0.6468 | 37.0 | 925 | 0.6188 | |
|
| 0.6567 | 38.0 | 950 | 0.6221 | |
|
| 0.6521 | 39.0 | 975 | 0.6172 | |
|
| 0.6403 | 40.0 | 1000 | 0.6141 | |
|
| 0.6505 | 41.0 | 1025 | 0.6147 | |
|
| 0.6419 | 42.0 | 1050 | 0.6174 | |
|
| 0.6436 | 43.0 | 1075 | 0.6174 | |
|
| 0.6381 | 44.0 | 1100 | 0.6130 | |
|
| 0.6527 | 45.0 | 1125 | 0.6144 | |
|
| 0.6489 | 46.0 | 1150 | 0.6129 | |
|
| 0.6395 | 47.0 | 1175 | 0.6141 | |
|
| 0.6483 | 48.0 | 1200 | 0.6174 | |
|
| 0.6331 | 49.0 | 1225 | 0.6165 | |
|
| 0.6454 | 50.0 | 1250 | 0.6141 | |
|
| 0.6356 | 51.0 | 1275 | 0.6140 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.14.1 |
|
|