metadata
base_model: sentence-transformers/distilbert-base-nli-mean-tokens
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2400
- loss:TripletLoss
- loss:MultipleNegativesRankingLoss
- loss:CoSENTLoss
widget:
- source_sentence: Flislegging av hall
sentences:
- 'query: tapetsering av rom med grunnflate 4x4.5 meter minus tre dører'
- 'query: fliser i hall'
- 'query: fornye markiseduk'
- source_sentence: Betongskjæring av rømningsvindu
sentences:
- Installere ventilasjonssystem
- Installere nytt vindu i trevegg
- Skjære ut rømningsvindu i betongvegg
- source_sentence: Ny garasje leddport
sentences:
- Installere garasjeport
- Bygge ny garasje
- Legge nytt tak
- source_sentence: Legge varmefolie i gang og stue.
sentences:
- Strø grusveier med salt
- Legge varmekabler
- Installere gulvvarme
- source_sentence: Oppgradere kjeller til boareale
sentences:
- Oppussing av kjeller for boligformål
- elektriker på bolig på 120kvm
- Installere dusjkabinett
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/distilbert-base-nli-mean-tokens
results:
- task:
type: triplet
name: Triplet
dataset:
name: test triplet evaluation
type: test-triplet-evaluation
metrics:
- type: cosine_accuracy
value: 0.8111346018322763
name: Cosine Accuracy
- type: dot_accuracy
value: 0.19873150105708245
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.8146582100070472
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.8083157152924595
name: Euclidean Accuracy
- type: max_accuracy
value: 0.8146582100070472
name: Max Accuracy
SentenceTransformer based on sentence-transformers/distilbert-base-nli-mean-tokens
This is a sentence-transformers model finetuned from sentence-transformers/distilbert-base-nli-mean-tokens. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/distilbert-base-nli-mean-tokens
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ostoveland/test12")
# Run inference
sentences = [
'Oppgradere kjeller til boareale',
'Oppussing av kjeller for boligformål',
'Installere dusjkabinett',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
test-triplet-evaluation
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8111 |
dot_accuracy | 0.1987 |
manhattan_accuracy | 0.8147 |
euclidean_accuracy | 0.8083 |
max_accuracy | 0.8147 |
Training Details
Training Datasets
Unnamed Dataset
- Size: 800 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 4 tokens
- mean: 12.39 tokens
- max: 49 tokens
- min: 4 tokens
- mean: 9.92 tokens
- max: 21 tokens
- min: 4 tokens
- mean: 8.88 tokens
- max: 34 tokens
- Samples:
sentence_0 sentence_1 sentence_2 Oppussing av stue
Renovere stue
Male stue
Sameie søker vaktmestertjenester
Trenger vaktmester til sameie
Renholdstjenester for sameie
Sprenge og klargjøre til garasje
Grave ut til garasje
Bygge garasje
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Unnamed Dataset
- Size: 800 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 4 tokens
- mean: 13.27 tokens
- max: 41 tokens
- min: 7 tokens
- mean: 14.34 tokens
- max: 29 tokens
- Samples:
sentence_0 sentence_1 Helsparkle rom med totale veggflater på ca 20 m2
query: helsparkling av rom med 20 m2 veggflater
Reparere skifer tak og tak vindu
query: fikse takvindu og skifertak
Pigge opp flisgulv, fjerne gips vegger og gipstak - 11 kvm
query: fjerne flisgulv, gipsvegger og gipstak på 11 kvm
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Unnamed Dataset
- Size: 800 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 4 tokens
- mean: 13.11 tokens
- max: 36 tokens
- min: 4 tokens
- mean: 10.54 tokens
- max: 28 tokens
- min: 0.1
- mean: 0.51
- max: 0.95
- Samples:
sentence_0 sentence_1 label Legging av våtromsbelegg
Renovering av bad
0.65
overvåkingskamera 3stk
installasjon av 3 overvåkingskameraer
0.95
Bytte lamper i portrom
Male portrom
0.15
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | test-triplet-evaluation_max_accuracy |
---|---|---|
1.0 | 75 | 0.8147 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}