Stable Diffusion concepts library

community

AI & ML interests

None defined yet.

sd-concepts-library's activity

Wauplin 
posted an update 5 months ago
view post
Post
3043
What a great milestone to celebrate! The huggingface_hub library is slowly becoming a cornerstone of the Python ML ecosystem when it comes to interacting with the @huggingface Hub. It wouldn't be there without the hundreds of community contributions and feedback! No matter if you are loading a model, sharing a dataset, running remote inference or starting jobs on our infra, you are for sure using it! And this is only the beginning so give a star if you wanna follow the project 👉 https://github.com/huggingface/huggingface_hub
  • 1 reply
·
Wauplin 
posted an update 5 months ago
view post
Post
4679
🚀 Exciting News! 🚀

We've just released 𝚑𝚞𝚐𝚐𝚒𝚗𝚐𝚏𝚊𝚌𝚎_𝚑𝚞𝚋 v0.25.0 and it's packed with powerful new features and improvements!

✨ 𝗧𝗼𝗽 𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝘀:

• 📁 𝗨𝗽𝗹𝗼𝗮𝗱 𝗹𝗮𝗿𝗴𝗲 𝗳𝗼𝗹𝗱𝗲𝗿𝘀 with ease using huggingface-cli upload-large-folder. Designed for your massive models and datasets. Much recommended if you struggle to upload your Llama 70B fine-tuned model 🤡
• 🔎 𝗦𝗲𝗮𝗿𝗰𝗵 𝗔𝗣𝗜: new search filters (gated status, inference status) and fetch trending score.
• ⚡𝗜𝗻𝗳𝗲𝗿𝗲𝗻𝗰𝗲𝗖𝗹𝗶𝗲𝗻𝘁: major improvements simplifying chat completions and handling async tasks better.

We’ve also introduced tons of bug fixes and quality-of-life improvements - thanks to the awesome contributions from our community! 💪

💡 Check out the release notes: Wauplin/huggingface_hub#8

Want to try it out? Install the release with:

pip install huggingface_hub==0.25.0

  • 1 reply
·
multimodalart 
posted an update 7 months ago
Wauplin 
posted an update 8 months ago
view post
Post
2012
🚀 Just released version 0.24.0 of the 𝚑𝚞𝚐𝚐𝚒𝚗𝚐𝚏𝚊𝚌𝚎_𝚑𝚞𝚋 Python library!

Exciting updates include:
⚡ InferenceClient is now a drop-in replacement for OpenAI's chat completion!

✨ Support for response_format, adapter_id , truncate, and more in InferenceClient

💾 Serialization module with a save_torch_model helper that handles shared layers, sharding, naming convention, and safe serialization. Basically a condensed version of logic scattered across safetensors, transformers , accelerate

📁 Optimized HfFileSystem to avoid getting rate limited when browsing HuggingFaceFW/fineweb

🔨 HfApi & CLI improvements: prevent empty commits, create repo inside resource group, webhooks API, more options in the Search API, etc.

Check out the full release notes for more details:
Wauplin/huggingface_hub#7
👀
·
Wauplin 
posted an update 8 months ago
view post
Post
3377
🚀 I'm excited to announce that huggingface_hub's InferenceClient now supports OpenAI's Python client syntax! For developers integrating AI into their codebases, this means you can switch to open-source models with just three lines of code. Here's a quick example of how easy it is.

Why use the InferenceClient?
🔄 Seamless transition: keep your existing code structure while leveraging LLMs hosted on the Hugging Face Hub.
🤗 Direct integration: easily launch a model to run inference using our Inference Endpoint service.
🚀 Stay Updated: always be in sync with the latest Text-Generation-Inference (TGI) updates.

More details in https://huggingface.co./docs/huggingface_hub/main/en/guides/inference#openai-compatibility
·
multimodalart 
posted an update 10 months ago
view post
Post
28145
The first open Stable Diffusion 3-like architecture model is JUST out 💣 - but it is not SD3! 🤔

It is Tencent-Hunyuan/HunyuanDiT by Tencent, a 1.5B parameter DiT (diffusion transformer) text-to-image model 🖼️✨, trained with multi-lingual CLIP + multi-lingual T5 text-encoders for english 🤝 chinese understanding

Try it out by yourself here ▶️ https://huggingface.co./spaces/multimodalart/HunyuanDiT
(a bit too slow as the model is chunky and the research code isn't super optimized for inference speed yet)

In the paper they claim to be SOTA open source based on human preference evaluation!
efederici 
posted an update 10 months ago
view post
Post
1741
Finally, I can post! 🚀

I created a Capybara-inspired Italian dataset by translating the initial instruction and running it through a pipeline to generate conversations. I used Claude Sonnet for translation and instruction generation, and Opus for generating the answers.

I hope this dataset proves useful for people working on 🇮🇹 language models.

⛁ Open sourcing the dataset here: efederici/capybara-claude-15k-ita
  • 1 reply
·
Wauplin 
posted an update 10 months ago
view post
Post
1831
🚀 Just released version 0.23.0 of the huggingface_hub Python library!

Exciting updates include:
📁 Seamless download to local dir!
💡 Grammar and Tools in InferenceClient!
🌐 Documentation full translated to Korean!
👥 User API: get likes, upvotes, nb of repos, etc.!
🧩 Better model cards and encoding for ModelHubMixin!

Check out the full release notes for more details:
Wauplin/huggingface_hub#6
👀
Wauplin 
posted an update 11 months ago
view post
Post
2330
🚀 Just released version 0.22.0 of the huggingface_hub Python library!

Exciting updates include:
✨ Chat-completion API in the InferenceClient!
🤖 Official inference types in InferenceClient!
🧩 Better config and tags in ModelHubMixin!
🏆 Generate model cards for your ModelHubMixin integrations!
🏎️ x3 download speed in HfFileSystem!!

Check out the full release notes for more details: Wauplin/huggingface_hub#5 👀
  • 2 replies
·
multimodalart 
posted an update 12 months ago
view post
Post
The Stable Diffusion 3 research paper broken down, including some overlooked details! 📝

Model
📏 2 base model variants mentioned: 2B and 8B sizes

📐 New architecture in all abstraction levels:
- 🔽 UNet; ⬆️ Multimodal Diffusion Transformer, bye cross attention 👋
- 🆕 Rectified flows for the diffusion process
- 🧩 Still a Latent Diffusion Model

📄 3 text-encoders: 2 CLIPs, one T5-XXL; plug-and-play: removing the larger one maintains competitiveness

🗃️ Dataset was deduplicated with SSCD which helped with memorization (no more details about the dataset tho)

Variants
🔁 A DPO fine-tuned model showed great improvement in prompt understanding and aesthetics
✏️ An Instruct Edit 2B model was trained, and learned how to do text-replacement

Results
✅ State of the art in automated evals for composition and prompt understanding
✅ Best win rate in human preference evaluation for prompt understanding, aesthetics and typography (missing some details on how many participants and the design of the experiment)

Paper: https://stabilityai-public-packages.s3.us-west-2.amazonaws.com/Stable+Diffusion+3+Paper.pdf
·