Pro Tip - if you're a Firefox user, you can set up Hugging Chat as integrated AI Assistant, with contextual links to summarize or simplify any text - handy!
Here is an AI Puzzle! When you solve it just use a ๐ emoji. NO SPOILERS A similar puzzle might have each picture that has a hidden meaning of summer, winter, fall, spring, and the answer would be seasons.
Its a little dated now (almost a year), so bottom right might be tough.
Last week, Intel's new Xeon CPUs, Sapphire Rapids (SPR), landed on Inference Endpoints and I think they got the potential to reduce the cost of your RAG pipelines ๐ธ
Why ? Because they come with Intelยฎ AMX support, which is a set of instructions that support and accelerate BF16 and INT8 matrix multiplications on CPU โก
I went ahead and built a Space to showcase how to efficiently deploy embedding models on SPR for both Retrieving and Ranking documents, with Haystack compatible components: https://huggingface.co./spaces/optimum-intel/haystack-e2e
Here's how it works:
- Document Store: A FAISS document store containing the seven-wonders dataset, embedded, indexed and stored on the Space's persistent storage to avoid unnecessary re-computation of embeddings.
- Retriever: It embeds the query at runtime and retrieves from the dataset N documents that are most semantically similar to the query's embedding. We use the small variant of the BGE family here because we want a model that's fast to run on the entire dataset and has a small embedding space for fast similarity search. Specifically we use an INT8 quantized bge-small-en-v1.5, deployed on an Intel Sapphire Rapids CPU instance.
- Ranker: It re-embeds the retrieved documents at runtime and re-ranks them based on semantic similarity to the query's embedding. We use the large variant of the BGE family here because it's optimized for accuracy allowing us to filter the most relevant k documents that we'll use in the LLM prompt. Specifically we use an INT8 quantized bge-large-en-v1.5, deployed on an Intel Sapphire Rapids CPU instance.
These 15 open models are available for serverless inference on Cloudflare Workers AI, powered by GPUs distributed in 150 datacenters globally - ๐ @rita3ko@mchenco@jtkipp@nkothariCF@philschmid
I really love this! Its a really innovative way to get robust defense against jailbreaking. Its not cheap, 2-3 calls per user request. But for some use-cases it can be worth it!