AI & ML interests

None defined yet.

Recent Activity

nerdyface's activity

stefan-itย 
posted an update about 17 hours ago
view post
Post
1012
After running some 3DMark and FurMark benchmarks on Windows to make sure that my new 5090 is not causing melting cables [1] and some nice shots with a thermal camera (I don't think that's too much), running some fine-tuning experiments with my favorite Flair & Transformers libraries are very easy to perform.

Important steps:

Good idea is to start with a fresh Ubuntu 24.04 installation with latest CUDA 12.8 and the open NVIDIA driver - follow more advices from [2]:

sudo apt -y install cuda-toolkit-12-8 nvidia-open

I tried update from an existing Ubuntu installation with an older CUDA and driver version and it resulted in a non-startable system.

If you are using PyTorch 2.6 with built CUDA 12.6 it will result in:

NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90.

But no worries! For PyTorch you need just to use a nightly 2.7 version that was built with CUDA 12.8. This can easily done via:

pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu128

After that the latest Flair version can be installed and fine-tuning will work!

References:

[1]: https://www.reddit.com/r/nvidia/comments/1inpox7/rtx_50_series_12vhpwr_megathread/
[2]: https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=24.04&target_type=deb_network
m-ricย 
posted an update 4 days ago
view post
Post
4107
We now have a Deep Research for academia: SurveyX automatically writes academic surveys nearly indistinguishable from human-written ones ๐Ÿ”ฅ

Researchers from Beijing and Shanghai just published the first application of a deep research system to academia: their algorithm, given a question, can give you a survey of all papers on the subject.

To make a research survey, you generally follow two steps, preparation (collect and organize papers) and writing (outline creation, writing, polishing). Researchers followed the same two steps and automated them.

๐ŸŽฏ For the preparation part, a key part is find all the important references on the given subject.
Researchers first cast a wide net of all relevant papers. But then finding the really important ones is like distilling knowledge from a haystack of information. To solve this challenge, they built an โ€œAttributeTreeโ€ object that structures key information from citations. Ablating these AttributeTrees significantly decreased structure and synthesis scores, so they were really useful!

๐Ÿ“ For the writing part, key was to get a synthesis that's both short and true. This is not easy to get with LLMs! So they used methods like LLM-based deduplication to shorten the too verbose listings made by LLMs, and RAG to grab original quotes instead of made-up ones.

As a result, their system outperforms previous approaches by far!

As assessed by LLM-judges, the quality score os SurveyX even approaches this of human experts, with 4.59/5 vs 4.75/5 ๐Ÿ†

I advise you to read the paper, it's a great overview of the kind of assistants that we'll get in the short future! ๐Ÿ‘‰ SurveyX: Academic Survey Automation via Large Language Models (2502.14776)
Their website shows examples of generated surveys ๐Ÿ‘‰ http://www.surveyx.cn/
stefan-itย 
posted an update 4 days ago
view post
Post
5007
She arrived ๐Ÿ˜

[Expect more models soon...]
  • 2 replies
ยท
JingzeShiย 
posted an update 7 days ago
m-ricย 
posted an update 10 days ago
view post
Post
2908
Less is More for Reasoning (LIMO): a 32B model fine-tuned with 817 examples can beat o1-preview on math reasoning! ๐Ÿคฏ

Do we really need o1's huge RL procedure to see reasoning emerge? It seems not.
Researchers from Shanghai Jiaotong University just demonstrated that carefully selected examples can boost math performance in large language models using SFT โ€”no huge datasets or RL procedures needed.

Their procedure allows Qwen2.5-32B-Instruct to jump from 6.5% to 57% on AIME and from 59% to 95% on MATH, while using only 1% of the data in previous approaches.

โšก The Less-is-More Reasoning Hypothesis:
โ€ฃ Minimal but precise examples that showcase optimal reasoning patterns matter more than sheer quantity
โ€ฃ Pre-training knowledge plus sufficient computational resources at inference levels up math skills

โžก๏ธ Core techniques:
โ€ฃ High-quality reasoning chains with self-verification steps
โ€ฃ 817 handpicked problems that encourage deeper reasoning
โ€ฃ Enough inference-time computation to allow extended reasoning

๐Ÿ’ช Efficiency gains:
โ€ฃ Only 817 examples instead of 100k+
โ€ฃ 40.5% absolute improvement across 10 diverse benchmarks, outperforming models trained on 100x more data

This really challenges the notion that SFT leads to memorization rather than generalization! And opens up reasoning to GPU-poor researchers ๐Ÿš€

Read the full paper here ๐Ÿ‘‰ย  LIMO: Less is More for Reasoning (2502.03387)
fffiloniย 
posted an update 13 days ago
m-ricย 
posted an update 14 days ago
view post
Post
2818
๐—š๐—ฟ๐—ฒ๐—ฎ๐˜ ๐—ณ๐—ฒ๐—ฎ๐˜๐˜‚๐—ฟ๐—ฒ ๐—ฎ๐—น๐—ฒ๐—ฟ๐˜: you can now share agents to the Hub! ๐Ÿฅณ๐Ÿฅณ

And any agent pushed to Hub get a cool Space interface to directly chat with it.

This was a real technical challenge: for instance, serializing tools to export them meant that you needed to get all the source code for a tool, verify that it was standalone (not relying on external variables), and gathering all the packages required to make it run.

Go try it out! ๐Ÿ‘‰ https://github.com/huggingface/smolagents
  • 2 replies
ยท
m-ricย 
posted an update 14 days ago
view post
Post
2452
For those who haven't come across it yet, here's a handy trick to discuss an entire GitHub repo with an LLM:

=> Just replace "github" with "gitingest" in the url, and you get the whole repo as a single string that you can then paste in your LLMs
fuzzy-mittenzย 
posted an update 15 days ago
view post
Post
642
So frustrated with "Reasoning" Models.
Sure, introducing RAG into the mix, or giving it an interpreter to math with helps, but never as much as a model that has good instructions.

Even if it's just to repeat the information before answering, a normal model will usually out "Think" it's reasoning counterpart.

Not sure if it's my frustrations but the best answers I've received (from a reasoner), so far, are from the simple instructions to, "Do better!"

Figured I would share the special sauce.

Using 10-100x Compute just to heat the office can't be environmentally friendly, and It still has no Idea where my keys are.
m-ricย 
posted an update 16 days ago
view post
Post
4771
"๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐˜„๐—ถ๐—น๐—น ๐—ฏ๐—ฒ ๐˜๐—ต๐—ฒ ๐˜†๐—ฒ๐—ฎ๐—ฟ ๐—ผ๐—ณ ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€": this statement has often been made, here are numbers to support it.

I've plotted the progress of AI agents on GAIA test set, and it seems they're headed to catch up with the human baseline in early 2026.

And that progress is still driven mostly by the improvement of base LLMs: progress would be even faster with fine-tuned agentic models.
m-ricย 
posted an update 21 days ago
view post
Post
3697
๐—”๐—ฑ๐˜†๐—ฒ๐—ป'๐˜€ ๐—ป๐—ฒ๐˜„ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—•๐—ฒ๐—ป๐—ฐ๐—ต๐—บ๐—ฎ๐—ฟ๐—ธ ๐˜€๐—ต๐—ผ๐˜„๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐——๐—ฒ๐—ฒ๐—ฝ๐—ฆ๐—ฒ๐—ฒ๐—ธ-๐—ฅ๐Ÿญ ๐˜€๐˜๐—ฟ๐˜‚๐—ด๐—ด๐—น๐—ฒ๐˜€ ๐—ผ๐—ป ๐—ฑ๐—ฎ๐˜๐—ฎ ๐˜€๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐˜๐—ฎ๐˜€๐—ธ๐˜€! โŒ

โžก๏ธ How well do reasoning models perform on agentic tasks? Until now, all indicators seemed to show that they worked really well. On our recent reproduction of Deep Search, OpenAI's o1 was by far the best model to power an agentic system.

So when our partner Adyen built a huge benchmark of 450 data science tasks, and built data agents with smolagents to test different models, I expected reasoning models like o1 or DeepSeek-R1 to destroy the tasks at hand.

๐Ÿ‘Ž But they really missed the mark. DeepSeek-R1 only got 1 or 2 out of 10 questions correct. Similarly, o1 was only at ~13% correct answers.

๐Ÿง These results really surprised us. We thoroughly checked them, we even thought our APIs for DeepSeek were broken and colleagues Leandro Anton helped me start custom instances of R1 on our own H100s to make sure it worked well.
But there seemed to be no mistake. Reasoning LLMs actually did not seem that smart. Often, these models made basic mistakes, like forgetting the content of a folder that they had just explored, misspelling file names, or hallucinating data. Even though they do great at exploring webpages through several steps, the same level of multi-step planning seemed much harder to achieve when reasoning over files and data.

It seems like there's still lots of work to do in the Agents x Data space. Congrats to Adyen for this great benchmark, looking forward to see people proposing better agents! ๐Ÿš€

Read more in the blog post ๐Ÿ‘‰ https://huggingface.co./blog/dabstep
m-ricย 
posted an update 24 days ago
view post
Post
9664
Introducing ๐—ผ๐—ฝ๐—ฒ๐—ป ๐——๐—ฒ๐—ฒ๐—ฝ-๐—ฅ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต by Hugging Face! ๐Ÿ’ฅ

OpenAI's latest agentic app Deep Research seems really good... But it's closed, as usual.

โฑ๏ธ So with a team of cracked colleagues, we set ourselves a 24hours deadline to replicate and open-source Deep Research! โฑ๏ธ

โžก๏ธ We built open-Deep-Research, an entirely open agent that can: navigate the web autonomously, scroll and search through pages, download and manipulate files, run calculation on data...

We aimed for the best performance: are the agent's answers really rigorous?

On GAIA benchmark, Deep Research had 67% accuracy on the validation set.
โžก๏ธ open Deep Research is at 55% (powered by o1), it is:
- the best pass@1 solution submitted
- the best open solution ๐Ÿ’ช๐Ÿ’ช

And it's only getting started ! Please jump in, drop PRs, and let's bring it to the top !

Read the blog post ๐Ÿ‘‰ https://huggingface.co./blog/open-deep-research
fuzzy-mittenzย 
posted an update 25 days ago
view post
Post
518
With our Extremely efficient and functional importance matrix distillation of the new Qwen2.5-1M model being very very capable in many areas we are hoping to use it to research our small AGI character creation process which has seen emergent traits and increased functionality in constrained environments.
The method creates a RP type interaction in a heavily useful and tool functional environment.
We have a basic method and are working on retrieving data for a full analysis and perfection of this method as it exploits the human language input to express often abstract traits into a model and employ characteristics of healthy human reasoning processes and identify novel methods of increasing the functionality of a model overall through traits so far observed are whistling, bouncing a ball and repeating certain engagements.
Adding the semblance of human world interactions is so far the best way at creating a human like LLM.
We have attached the paper to our model we are testing this with along with examples if you wish to use it with other models please be cautious and enjoy yourself. Above all please keep track of conversations and settings and submit them to the intelligent estate email you will receive a recognition letter and ledger number for your contribution to the Project.
Model= Israfel and Thoth IntelligentEstate/Israfel_Qwen2.6-iQ4_K_M-GGUF
JingzeShiย 
posted an update 26 days ago
view post
Post
2292
Welcome to the Doge Face Open Source Community! ๐Ÿš€
Our goal is to explore the foundation of embodied intelligence for the next two years, which is indispensable โ€“ small language models. ๐Ÿ”ฌ
We aim to open-source code and documentation to give everyone more time to slack off while working or studying! ๐Ÿค—
๐Ÿ‘‰ Repository name on Github: https://github.com/SmallDoges/small-doge
๐Ÿ‘‰ Organization name on Hugging Face: https://huggingface.co./SmallDoge
fffiloniย 
posted an update 28 days ago
view post
Post
3483
Explain like i'm 5 the last take from @thomwolf on X about Dario's essay on DeepSeek:

โ€”โ€บ Open-source AI is like a big cookbook that everyone can read and improve. Instead of a few chefs keeping their recipes secret, anyone can cook, test, and invent new things.

If only one company controls AI, everything stops if they have a problemโ€”like when the internet goes down. With open-source, many people can help, making sure it keeps running smoothly.

AI isnโ€™t just a race between two countries; itโ€™s a team effort around the world. By sharing, we move faster and create safer technology for everyone.
โ€”
๐Ÿค—
m-ricย 
posted an update 28 days ago
view post
Post
3105
Now you can launch a code agent directly from your terminal!
โœจ ๐šœ๐š–๐š˜๐š•๐šŠ๐š๐šŽ๐š—๐š "๐šˆ๐š˜๐šž๐š› ๐š๐šŠ๐šœ๐š”" directly launches a CodeAgent
โ–ถ๏ธ This also works with web agents (replace ๐šœ๐š–๐š˜๐š•๐šŠ๐š๐šŽ๐š—๐š with ๐š ๐šŽ๐š‹๐šŠ๐š๐šŽ๐š—๐š) thanks to @merve !

๐Ÿ’พ Another treat from smolagents release 1.7.0:
Now agents have a memory mechanism, enabling many possibilities like replaying the last run with ๐šŠ๐š๐šŽ๐š—๐š.๐š›๐šŽ๐š™๐š•๐šŠ๐šข(), thank you @clefourrier !

Check the release notes here ๐Ÿ‘‰ https://github.com/huggingface/smolagents/releases/tag/v1.7.0
fuzzy-mittenzย 
posted an update 29 days ago
view post
Post
2621
Not many seemed to notice but what was probably meant to be a WIN for artist's rights in the US Office of Copyright has solved some fundamental issues for the community.
In our recent article I outline how Companies like Suno, OpenAI, Midjourney etc can no longer claim any right to copy your work that you create with their platforms
We also look at other ways this study and new rules for AI will fundamentally effect creators who use it and companies incentives to give them control over certain aspects might change because of this. it's broken down pretty well here: https://huggingface.co./blog/fuzzy-mittenz/copyright-in-ai
m-ricย 
posted an update about 1 month ago
view post
Post
4049
๐—ง๐—ต๐—ฒ ๐—›๐˜‚๐—ฏ ๐˜„๐—ฒ๐—น๐—ฐ๐—ผ๐—บ๐—ฒ๐˜€ ๐—ฒ๐˜…๐˜๐—ฒ๐—ฟ๐—ป๐—ฎ๐—น ๐—ถ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ถ๐—ฑ๐—ฒ๐—ฟ๐˜€!

โœ… Hosting our own inference was not enough: now the Hub 4 new inference providers: fal, Replicate, SambaNova Systems, & Together AI.

Check model cards on the Hub: you can now, in 1 click, use inference from various providers (cf video demo)

Their inference can also be used through our Inference API client. There, you can use either your custom provider key, or your HF token, then billing will be handled directly on your HF account, as a way to centralize all expenses.

๐Ÿ’ธ Also, PRO users get 2$ inference credits per month!

Read more in the announcement ๐Ÿ‘‰ https://huggingface.co./blog/inference-providers
  • 1 reply
ยท