💫...And we're live!💫 Seasonal newsletter from ethicsy folks at Hugging Face, exploring the ethics of "AI Agents" https://huggingface.co./blog/ethics-soc-7 Our analyses found: - There's a spectrum of "agent"-ness - *Safety* is a key issue, leading to many other value-based concerns Read for details & what to do next! With @evijit , @giadap , and @sasha
🤗👤 💻 Speaking of AI agents ... ...Is easier with the right words ;)
My colleagues @meg@evijit@sasha and @giadap just published a wonderful blog post outlining some of the main relevant notions with their signature blend of value-informed and risk-benefits contrasting approach. Go have a read!
🇪🇺 Policy Thoughts in the EU AI Act Implementation 🇪🇺
There is a lot to like in the first draft of the EU GPAI Code of Practice, especially as regards transparency requirements. The Systemic Risks part, on the other hand, is concerning for both smaller developers and for external stakeholders.
I wrote more on this topic ahead of the next draft. TLDR: more attention to immediate large-scale risks and to collaborative solutions supported by evidence can help everyone - as long as developers disclose sufficient information about their design choices and deployment contexts.
We applied the same data-driven approach that led to SOTA English performance in🍷 FineWeb to thousands of languages.
🥂 FineWeb2 has 8TB of compressed text data and outperforms other multilingual datasets in our experiments.
The dataset is released under the permissive 📜 ODC-By 1.0 license, and the 💻 code to reproduce it and our evaluations is public.
We will very soon announce a big community project, and are working on a 📝 blogpost walking you through the entire dataset creation process. Stay tuned!
- Pre-training code with nanotron - Evaluation suite with lighteval - Synthetic data generation using distilabel (powers our new SFT dataset HuggingFaceTB/smoltalk) - Post-training scripts with TRL & the alignment handbook - On-device tools with llama.cpp for summarization, rewriting & agents
Apache 2.0 licensed. V2 pre-training data mix coming soon!
🚨 How green is your model? 🌱 Introducing a new feature in the Comparator tool: Environmental Impact for responsible #LLM research! 👉 open-llm-leaderboard/comparator Now, you can not only compare models by performance, but also by their environmental footprint!
🌍 The Comparator calculates CO₂ emissions during evaluation and shows key model characteristics: evaluation score, number of parameters, architecture, precision, type... 🛠️ Make informed decisions about your model's impact on the planet and join the movement towards greener AI!