BigLAM: BigScience Libraries, Archives and Museums

non-profit

AI & ML interests

🤗 Hugging Face x 🌸 BigScience initiative to create open source community resources for LAMs.

Recent Activity

biglam's activity

davanstrien 
posted an update 2 days ago
view post
Post
1630
The data-is-better-together/fineweb-c dataset is growing!

This week a few more languages have got 1,000 annotations for the educational quality of data from HuggingFaceFW/fineweb-2.

Why should you care?

The quality of pre-training data can have a big impact on the performance of downstream language models trained on that data ( HuggingFaceFW/blogpost-fineweb-v1).

Being able to filter by educational quality is on way of improving the quality of the data you use for training an LLM. Very importantly this approach can also reduce the amount of data needed for pertaining.

Why not use an LLM?

LLMs can be used to annotate educational quality for a subset of data. This data can then be used to train a smaller encoder only model to label the full dataset. However, this may not work well for languages outside of english. This is where fineweb-c (community) comes in.

The community is annotating the educational quality of fineweb2 data. Currently 114 languages have some annotations. These annotations will enable a number of things:

- Evaluate whether an LLM can label the educational quality for texts in that language well
- Directly be used for training quality classifiers
- Help discover other rules and huerisitcs for refining fineweb2 further for different languages.

This week the following languages where done:

Swedish thanks to: @Lauler @AntonVic @ohallstrom @bjarlestam @menbom @Ekgren @apsod

Ukrainian thanks to: @hannayukhymenko @robinhad @realPivo @RabotiahovDmytro @reciprocate

Assamese thanks to: @moyoor97 @Arpanjyoti @nawaf-helmi123 @pahigogoi1 @aelhence @kishorekashyap

Want to learn more: https://huggingface.co./blog/davanstrien/fineweb2-community

Contribute yourself here: data-is-better-together/fineweb-c
  • 1 reply
·
albertvillanova 
posted an update 5 days ago
alielfilali01 
posted an update 5 days ago
view post
Post
1710
3C3H AraGen Leaderboard welcomes today deepseek-ai/DeepSeek-V3 and 12 other models (including the late gpt-3.5 💀) to the ranking of best LLMs in Arabic !


Observations:
- DeepSeek-v3 ranked 3rd and only Open model among the top 5 !

- A 14B open model ( Qwen/Qwen2.5-14B-Instruct) outperforms gpt-3.5-turbo-0125 (from last year). This shows how much we came in advancing and supporting Arabic presence within the LLM ecosystem !

- Contrary to what observed in likelihood-acc leaderboards (like OALL/Open-Arabic-LLM-Leaderboard) further finetuned models like maldv/Qwentile2.5-32B-Instruct actually decreased the performance compared to the original model Qwen/Qwen2.5-32B-Instruct.
It's worth to note that the decrease is statiscally insignificant which imply that at best, the out-domain finetuning do not really hurts the model original capabilities acquired during pretraining.
Previous work addressed this (finetuning VS pretraining) but more investigation in this regard is required (any PhDs here ? This could be your question ...)


Check out the latest rankings: inceptionai/AraGen-Leaderboard
alielfilali01 
posted an update 13 days ago
view post
Post
1809
~75% on the challenging GPQA with only 40M parameters 🔥🥳

GREAT ACHIEVEMENT ! Or is it ?

This new Work, "Data Laundering: Artificially Boosting Benchmark Results through Knowledge Distillation", take out the mystery about many models i personally suspected their results. Speacially on leaderboards other than the english one, Like the Open Arabic LLM Leaderbaord OALL/Open-Arabic-LLM-Leaderboard.

The authors of this work, first started by training a model on the GPQA data, which, unsurprisingly, led to the model achieving 100% performance.

Afterward, they trained what they referred to as a 'legitimate' model on legitimate data (MedMCQA). However, they introduced a distillation loss from the earlier, 'cheated' model.

What they discovered was fascinating: the knowledge of GPQA leaked through this distillation loss, even though the legitimate model was never explicitly trained on GPQA during this stage.

This raises important questions about the careful use of distillation in model training, especially when the training data is opaque. As they demonstrated, it’s apparently possible to (intentionally or unintentionally) leak test data through this method.

Find out more: Data Laundering: Artificially Boosting Benchmark Results through Knowledge Distillation (2412.15255)
  • 1 reply
·
davanstrien 
posted an update 16 days ago
view post
Post
3144
🇸🇰 Hovorte po slovensky? Help build better AI for Slovak!

We only need 90 more annotations to include Slovak in the next Hugging Face FineWeb2-C dataset ( data-is-better-together/fineweb-c) release!

Your contribution will help create better language models for 5+ million Slovak speakers.

Annotate here: data-is-better-together/fineweb-c.

Read more about why we're doing it: https://huggingface.co./blog/davanstrien/fineweb2-community
  • 3 replies
·
davanstrien 
posted an update 23 days ago
view post
Post
1760
Introducing FineWeb-C 🌐🎓, a community-built dataset for improving language models in ALL languages.

Inspired by FineWeb-Edu the community is labelling the educational quality of texts for many languages.

318 annotators, 32K+ annotations, 12 languages - and growing! 🌍

data-is-better-together/fineweb-c
alielfilali01 
posted an update 30 days ago
view post
Post
3417
Unpopular opinion: Open Source takes courage to do !

Not everyone is brave enough to release what they have done (the way they've done it) to the wild to be judged !
It really requires a high level of "knowing wth are you doing" ! It's kind of a super power !

Cheers to the heroes here who see this!
·
alielfilali01 
posted an update about 1 month ago
view post
Post
1520
Apparently i forgot to put this here !

Well, this is a bit late but consider given our recent blog a read if you are interested in Evaluation.

You don't have to be into Arabic NLP in order to read it, the main contribution we are introducing is a new evaluation measure for NLG. We made the fisrt application of this measure on Arabic for now and we will be working with colleagues from the community to expand it to other languages.

Blog:
Rethinking LLM Evaluation with 3C3H: AraGen Benchmark and Leaderboard
https://huggingface.co./blog/leaderboard-3c3h-aragen

Space:
inceptionai/AraGen-Leaderboard

Give it a read and let me know your thoughts 🤗
stefan-it 
posted an update about 1 month ago
view post
Post
1218
My latest project is the outcome of the last 2+ years working with TPUs from the amazing TPU Research Cloud (TRC) program and training Encoder-only LMs with the TensorFlow Model Garden library.

👉 Link: https://github.com/stefan-it/model-garden-lms

An overview of some features:

- Cheatsheet for setting-up a TPU VM Pod (with all necessary dependencies) to pretrain LMs with TF Model Garden
- Conversion scripts that convert TF Model Garden weights to Hugging Face Transformers-compatible models
- Supported architectures include BERT, BERT with Token Dropping and TEAMS

I also released BERT-based models pretrained on the great Hugging Face FineWeb and FineWeb-Edu datasets (10BT subset). With more to come!

👉 Model Hub Link: https://huggingface.co./model-garden-lms

If you find these resources useful, please give them a like!

Made from Bavarian Oberland with ❤️ and 🥨.
christopher 
posted an update about 1 month ago
view post
Post
1599
The folks at Foursquare released a dataset of 104.5 million places of interest ( foursquare/fsq-os-places) and here's all of them on a plot
·
christopher 
posted an update about 1 month ago
davanstrien 
posted an update about 1 month ago
view post
Post
511
Increasingly, LLMs are becoming very useful for helping scale annotation tasks, i.e. labelling and filtering. When combined with the structured generation, this can be a very scalable way of doing some pre-annotation without requiring a large team of human annotators.

However, there are quite a few cases where it still doesn't work well. This is a nice paper looking at the limitations of LLM as an annotator for Low Resource Languages: On Limitations of LLM as Annotator for Low Resource Languages (2411.17637).

Humans will still have an important role in the loop to help improve models for all languages (and domains).
davanstrien 
posted an update about 2 months ago
view post
Post
2485
First dataset for the new Hugging Face Bluesky community organisation: bluesky-community/one-million-bluesky-posts 🦋

📊 1M public posts from Bluesky's firehose API
🔍 Includes text, metadata, and language predictions
🔬 Perfect to experiment with using ML for Bluesky 🤗

Excited to see people build more open tools for a more open social media platform!
davanstrien 
posted an update about 2 months ago
view post
Post
1354
The Bluesky AT Protocol unlocks exciting possibilities:
- Building custom feeds using ML
- Creating dashboards for data exploration
- Developing custom models for Bluesky
To gather Bluesky resources on the Hub, I've created a community org: https://huggingface.co./bluesky-community

My first rather modest contribution is a dashboard that shows the number of posts every second. Drinking straight from the firehose API 🚰

bluesky-community/bluesky-posts-over-time
  • 1 reply
·
davanstrien 
posted an update about 2 months ago
albertvillanova 
posted an update about 2 months ago
view post
Post
1514
🚨 How green is your model? 🌱 Introducing a new feature in the Comparator tool: Environmental Impact for responsible #LLM research!
👉 open-llm-leaderboard/comparator
Now, you can not only compare models by performance, but also by their environmental footprint!

🌍 The Comparator calculates CO₂ emissions during evaluation and shows key model characteristics: evaluation score, number of parameters, architecture, precision, type... 🛠️
Make informed decisions about your model's impact on the planet and join the movement towards greener AI!
alielfilali01 
posted an update 2 months ago
view post
Post
2193
Unpopular opinion : o1-preview is more stupid than 4o and Qwen2.5-72B-Instruct in extremely underrated !
  • 2 replies
·