PleIAs

company
Activity Feed

AI & ML interests

Open Science LLMs

Recent Activity

Pclanglais  updated a dataset about 15 hours ago
PleIAs/Medical-Commons
Pclanglais  published a dataset about 15 hours ago
PleIAs/Medical-Commons
View all activity

PleIAs's activity

stefan-it 
posted an update 3 days ago
view post
Post
740
🇹🇷 😍 I'm very happy to finally announce my new Turkish LM called "BERT5urk":

stefan-it/bert5urk

It is a 1.42B T5-based model, trained with UL2 pretraining objective on the Turkish part of the awesome HuggingFaceFW/fineweb-2 dataset.

Feel free to check it out!
  • 1 reply
·
davanstrien 
posted an update 7 days ago
view post
Post
2562
📊 Introducing "Hugging Face Dataset Spotlight" 📊

I'm excited to share the first episode of our AI-generated podcast series focusing on nice datasets from the Hugging Face Hub!

This first episode explores mathematical reasoning datasets:

- SynthLabsAI/Big-Math-RL-Verified: Over 250,000 rigorously verified problems spanning multiple difficulty levels and mathematical domains
- open-r1/OpenR1-Math-220k: 220,000 math problems with multiple reasoning traces, verified for accuracy using Math Verify and Llama-3.3-70B models.
- facebook/natural_reasoning: 1.1 million general reasoning questions carefully deduplicated and decontaminated from existing benchmarks, showing superior scaling effects when training models like Llama3.1-8B-Instruct.

Plus a bonus segment on bespokelabs/bespoke-manim!

https://www.youtube.com/watch?v=-TgmRq45tW4
stefan-it 
posted an update 7 days ago
view post
Post
3091
After running some 3DMark and FurMark benchmarks on Windows to make sure that my new 5090 is not causing melting cables [1] and some nice shots with a thermal camera (I don't think that's too much), running some fine-tuning experiments with my favorite Flair & Transformers libraries are very easy to perform.

Important steps:

Good idea is to start with a fresh Ubuntu 24.04 installation with latest CUDA 12.8 and the open NVIDIA driver - follow more advices from [2]:

sudo apt -y install cuda-toolkit-12-8 nvidia-open

I tried update from an existing Ubuntu installation with an older CUDA and driver version and it resulted in a non-startable system.

If you are using PyTorch 2.6 with built CUDA 12.6 it will result in:

NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90.

But no worries! For PyTorch you need just to use a nightly 2.7 version that was built with CUDA 12.8. This can easily done via:

pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu128

After that the latest Flair version can be installed and fine-tuning will work!

References:

[1]: https://www.reddit.com/r/nvidia/comments/1inpox7/rtx_50_series_12vhpwr_megathread/
[2]: https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=24.04&target_type=deb_network
  • 1 reply
·
davanstrien 
posted an update 8 days ago
view post
Post
3554
Quick POC: Turn a Hugging Face dataset card into a short podcast introducing the dataset using all open models.

I think I'm the only weirdo who would enjoy listening to something like this though 😅

Here is an example for eth-nlped/stepverify
  • 2 replies
·
stefan-it 
posted an update 11 days ago
view post
Post
5059
She arrived 😍

[Expect more models soon...]
  • 2 replies
·
davanstrien 
posted an update 15 days ago
view post
Post
2561
Hacked together a way to log trl GRPO training completions to a 🤗 dataset repo. This allows you to:

- Track rewards from multiple reward functions
- Treat the completion and rewards from training as a "proper" dataset and do EDA
- Share results for open science

The implementation is super hacky, but I'm curious if people would find this useful.

To push completions to the Hub, you just need two extra parameters:

log_completions=True
log_completions_hub_repo='your-username/repo-name'

Example dataset: davanstrien/test-logs
Colab: https://colab.research.google.com/drive/1wzBFPVthRYYTp-mEYlznLg_e_0Za1M3g

davanstrien 
posted an update 19 days ago
davanstrien 
posted an update 21 days ago
view post
Post
1895
How do you make 1M+ Hugging Face models & datasets more discoverable?

davanstrien/Smol-Hub-tldr!

I fine-tuned HuggingFaceTB/SmolLM2-360M to generate one-line summaries from a model or dataset README.

Its own self-description?
"A model for generating concise summaries of model & dataset cards from the Hugging Face Hub"

The goal? Make it easier to find the right models and datasets for your specific needs. It's already powering a semantic search for datasets Space.

It's still a WIP but thanks to @loubnabnl , @anton-l , @eliebak et al, for cooking such a nice base model for fine-tuning small, efficient models for specific domains and tasks. 🙏
davanstrien 
posted an update 22 days ago
davanstrien 
posted an update about 1 month ago
davanstrien 
posted an update about 1 month ago
davanstrien 
posted an update about 1 month ago
view post
Post
2039
🌍 Big step for multilingual AI data!

The Hugging Face community has rated educational content in languages spoken by 1.6 billion people! New additions:
• Japanese
• Italian
• Old High German

Learn more and contribute: https://huggingface.co./blog/davanstrien/fineweb2-community

These ratings can help enhance training data for major world languages.
  • 1 reply
·
davanstrien 
posted an update about 2 months ago
view post
Post
3075
Introducing scandi-fine-web-cleaner davanstrien/scandi-fine-web-cleaner, the first model trained on FineWeb-C community annotations!

FineWeb2 is a massive multilingual dataset for pre-training language models. Like any web-scale dataset, it contains low-quality content. How can we improve it?

Over the past months, an amazing community of 400+ annotators has been labelling content quality (using Argilla) across 23 languages through the FineWeb-C initiative.

Today, I'm happy to share the first classifier trained on this data.

🔍 What we've built:

- A lightweight classifier that efficiently removes low-quality content
- 90%+ precision demonstrated on Danish & Swedish
- Can process the 43M+ documents in Danish FineWeb2 with minimal compute

🌍 Why this matters: The approach can be reproduced for any of the 23 languages in FineWeb-C ( data-is-better-together/fineweb-c). We can improve training data quality at scale without massive compute resources by starting with community annotations and training small, efficient classifiers.

Want to build a classifier for your language? Check out the full blog post with code examples and implementation details: https://danielvanstrien.xyz/posts/2025/FineWeb-c/scandinavian-content-filtering-fineweb.html
  • 1 reply
·
davanstrien 
posted an update about 2 months ago
view post
Post
2265
The data-is-better-together/fineweb-c dataset is growing!

This week a few more languages have got 1,000 annotations for the educational quality of data from HuggingFaceFW/fineweb-2.

Why should you care?

The quality of pre-training data can have a big impact on the performance of downstream language models trained on that data ( HuggingFaceFW/blogpost-fineweb-v1).

Being able to filter by educational quality is on way of improving the quality of the data you use for training an LLM. Very importantly this approach can also reduce the amount of data needed for pertaining.

Why not use an LLM?

LLMs can be used to annotate educational quality for a subset of data. This data can then be used to train a smaller encoder only model to label the full dataset. However, this may not work well for languages outside of english. This is where fineweb-c (community) comes in.

The community is annotating the educational quality of fineweb2 data. Currently 114 languages have some annotations. These annotations will enable a number of things:

- Evaluate whether an LLM can label the educational quality for texts in that language well
- Directly be used for training quality classifiers
- Help discover other rules and huerisitcs for refining fineweb2 further for different languages.

This week the following languages where done:

Swedish thanks to: @Lauler @AntonVic @ohallstrom @bjarlestam @menbom @Ekgren @apsod

Ukrainian thanks to: @hannayukhymenko @robinhad @realPivo @RabotiahovDmytro @reciprocate

Assamese thanks to: @moyoor97 @Arpanjyoti @nawaf-helmi123 @pahigogoi1 @aelhence @kishorekashyap

Want to learn more: https://huggingface.co./blog/davanstrien/fineweb2-community

Contribute yourself here: data-is-better-together/fineweb-c
  • 1 reply
·