|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for MiniCPMV. |
|
""" |
|
|
|
from typing import List, Optional, Union |
|
import torch |
|
import re |
|
|
|
from transformers.image_utils import ImageInput |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy |
|
from transformers.utils import TensorType |
|
|
|
from .image_processing_minicpmv import MiniCPMVBatchFeature |
|
|
|
|
|
class MiniCPMVProcessor(ProcessorMixin): |
|
r""" |
|
Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor. |
|
|
|
[`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the |
|
[`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information. |
|
|
|
Args: |
|
image_processor ([`MiniCPMVImageProcessor`], *optional*): |
|
The image processor is a required input. |
|
tokenizer ([`LlamaTokenizerWrapper`], *optional*): |
|
The tokenizer is a required input. |
|
""" |
|
attributes = ["image_processor", "tokenizer"] |
|
image_processor_class = "AutoImageProcessor" |
|
tokenizer_class = "AutoTokenizer" |
|
|
|
def __init__(self, image_processor=None, tokenizer=None): |
|
super().__init__(image_processor, tokenizer) |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], |
|
images: ImageInput = None, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
max_length: Optional[int] = None, |
|
do_pad: Optional[bool] = True, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
) -> MiniCPMVBatchFeature: |
|
if images is not None: |
|
image_inputs = self.image_processor(images, do_pad=do_pad, return_tensors=return_tensors) |
|
return self._convert_images_texts_to_inputs(image_inputs, text, max_length=max_length, return_tensors=return_tensors) |
|
|
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
output_ids = args[0] |
|
result_text = [] |
|
for result in output_ids: |
|
result = result[result != 0] |
|
if result[0] == self.tokenizer.bos_id: |
|
result = result[1:] |
|
if result[-1] == self.tokenizer.eos_id: |
|
result = result[:-1] |
|
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip()) |
|
return result_text |
|
|
|
|
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
result = args[0] |
|
result = result[result != 0] |
|
if result[0] == self.tokenizer.bos_id: |
|
result = result[1:] |
|
if result[-1] == self.tokenizer.eos_id: |
|
result = result[:-1] |
|
return self.tokenizer.decode(result, *args[1:], **kwargs).strip() |
|
|
|
def _convert( |
|
self, input_str, max_inp_length: Optional[int] = None |
|
): |
|
if self.tokenizer.add_bos_token: |
|
input_ids = self.tokenizer.encode(input_str) |
|
else: |
|
input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str) |
|
if max_inp_length is not None: |
|
input_ids = input_ids[:max_inp_length] |
|
input_ids = torch.tensor(input_ids, dtype=torch.int32) |
|
|
|
image_start_tokens = torch.where(input_ids == self.tokenizer.im_start_id)[0] |
|
image_start_tokens += 1 |
|
image_end_tokens = torch.where(input_ids == self.tokenizer.im_end_id)[0] |
|
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens)) |
|
image_bounds = torch.hstack( |
|
[ |
|
image_start_tokens[:valid_image_nums].unsqueeze(-1), |
|
image_end_tokens[:valid_image_nums].unsqueeze(-1), |
|
] |
|
) |
|
return input_ids.unsqueeze(0), image_bounds |
|
|
|
def _convert_images_texts_to_inputs(self, images, texts, do_pad=False, truncation=None, max_length=None, return_tensors=None): |
|
if not len(images): |
|
model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=do_pad, truncation=truncation, max_length=max_length) |
|
return MiniCPMVBatchFeature(data={**model_inputs}) |
|
|
|
pattern = "(<image>./</image>)" |
|
images, image_sizes = images["pixel_values"], images["image_sizes"] |
|
|
|
image_tags = re.findall(pattern, texts) |
|
assert len(image_tags) <= 1 and len(image_sizes) == 1 |
|
text_chunks = texts.split(pattern) |
|
final_texts = text_chunks[0] + self.image_processor.get_slice_image_placeholder(image_sizes[0]) \ |
|
+ text_chunks[1] + "<AI>" |
|
input_ids, image_bounds = self._convert(final_texts, max_length) |
|
|
|
return MiniCPMVBatchFeature(data={ |
|
"input_ids": input_ids, |
|
"pixel_values": images, |
|
"image_sizes": [image_sizes], |
|
"image_bounds": [image_bounds] |
|
}, tensor_type=return_tensors) |
|
|
|
@property |
|
|
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
|